首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
固相反应法制备高储能密度及高储能效率的驰豫型反铁电PLZT陶瓷
作者:钟米昌   邹艺轩 姚英邦     鲁圣国 
单位:(广东省智能材料和能量转化器件工程技术研究中心 广东省功能软凝聚态物质重点实验室 广东工业大学材料与能源学院 广州 510006) 
关键词:锆钛酸镧铅陶瓷 弛豫型反铁电体 固相反应 储能密度 储能效率 
分类号:TQ174
出版年,卷(期):页码:2019,47(6):0-0
DOI:
摘要:

 通过固相反应法制备了锆钛酸铅镧(PLZT)陶瓷并研究了其储能特性。根据室温下PLZT相图制备了反铁电相和弛豫型铁电体相相界附近的PLZT陶瓷,并选择储能密度和储能效率相对较高的组分通过流延法制备了陶瓷厚膜,并通过电滞回线计算样品的储能密度和储能效率。结果表明:所制备的样品同时表现出反铁电特性和弛豫型铁电体特性,样品室温下的储能密度能达到0.61 J/cm3,同组分厚膜陶瓷室温下储能密度能达到1.414 J/cm3;样品储能效率能达到94.4%;且样品的储能密度和储能效率随温度的变化表现出不同的变化趋势。

 Lead lanthanum zirconate titanate (PLZT) ceramics were prepared by a solid-state reaction method, and the enengy storage properties of PLZT were investigated via the polarization-electric field(P–E) hysteresis coops. The PLZT compositions were designed near to the relaxor ferroelectric and antiferroelectric region according to the room-temperature phase diagram of PbZrO3–PbTiO3–La2O3 system. The compositions with high energy storage density and high energy storage efficiency was chosen to prepare ceramic thick film by a tape-casting method. The composition and microstructure of the samples were analyzed by X-ray diffraction and scanning electron microscopy. The electrical properties of the samples were characterized by a precision impedance analyzer and a ferroelectric tester, respectively. The energy storage density and energy storage efficiency of the samples were calculated according to the hysteresis loop. The results show that samples manifest antiferroelectric and relaxor ferroelectric characteristics, simultaneously. The energy storage density of is 0.613 J/cm3 for bulk ceramic and 1.414 J/cm3 for thick film ceramic counterpart at room temperature, and the energy storage efficiency of sample can reach 94.4%. The energy storage density and efficiency show different tendencies with respect to the temperature.

基金项目:
国家自然科学基金面上项目(51372042,51872053);国家自然科学基金委-广东省联合基金(U1501246);广东省自然科学基金重大基础研究培育项目(2015As0308004)。
作者简介:
参考文献:

 [1] HAO X, ZHAI J, KONG L B, et al. A comprehensive review on the progress of lead zirconate-based antiferroelectric materials[J]. Prog Mater Sci, 2014, 63: 1–57. 

[2] BURN I, SMYTH D M. Energy storage in ceramic dielectrics[J]. J Am Ceram Soc. 1990, 73(2): 323–328
[3] YAO K, CHEN S, RAHIMABADY M, et al. Nonlinear dielectric thin films for high-power electric storage with energy density comparable with electrochemical supercapacitores[J], IEEE Trans. Ultrason, Ferroelectr, and Freq. Control 58, 2011, 58(9): 1968–1974.
[4] XING Z, FENG Y, WEI X. Effect of Sn content on dielectric, piezoelectric and ferroelectric properties for Pb(Zr0.35Ti0.65)1–xSnxO3 ceramics near morphotropic phase boundary[J]. J Alloy Compd, 2015, 627: 238–243.
[5] XU R, ZHU Q, TIAN J, et al. Effect of Ba-dopant on dielectric and energy storage properties of PLZST antiferroelectric ceramics[J]. Ceram Int, 2017, 43(2): 2481–2485.
[6] KUMAR A, PRASAD V V B, RAJU K C J, et al. Lanthanum induced diffuse phase transition in high energy mechanochemically processed and poled PLZT 8/60/40 ceramics[J]. J Alloy Compd, 2016, 654: 95–102.
[7] HE H, TAN X. A Comparative study of the structure and properties of Sn-modified lead zirconate titanate ferroelectric and antiferroelectric ceramics[J]. J Am Ceram Soc, 2007, 90(7): 2090–2094.
[8] PRASSAD B S, HER J, PAN T. Impact of Sr-doping on structural and electrical properties of Pb(Zr0.52Ti0.48)O3 thin films on RuO2 electrodes[J]. Ceram Int, 2017, 43(13): 9806–9814.
[9] WANG J, YANG T, CHEN S, et al. High energy storage density performance of Ba, Sr-modified lead lanthanum zirconate titanate stannate antiferroelectric ceramics[J]. Mater Res Bull, 2013, 48(10): 3847–3849.
[10] SHARIFZADEH MIRSHEKARLOO M, YAO K. Large strain and high energy storage density in orthorhombic perovskite (Pb0.97La0.02)(Zr1–x–ySnxTiy)O3 antiferroelectric thin films[J]. Appl Phys Lett, 2010, 97(14): 142902.
[11] BIAN F, YAN S, XU C, et al. Enhanced breakdown strength and energy density of antiferroelectric Pb, La(Zr, Sn, Ti)O3 ceramic by forming core–shell structure[J]. J Eur Ceram Soc, 2018, 38(9): 3170–3176.
[12] HAO X, WANG Y, ZHHANG L, et al. Composition-dependent dielectric and energy-storage properties of (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric thick films[J]. Appl Phys Lett, 2013, 102(16): 163903.
[13] CHEN L, LI Y, ZHANG Q, et al. Electrical properties and energy-storage performance of (Pb0.92Ba0.05La0.02)(Zr0.68Sn0.27Ti0.05)O3 antiferroelectric thick films prepared by tape-casing method[J]. Ceram Int, 2016, 42(11): 12537–12542.
[14] SHEN J, WANG X, YANG T, et al. High discharge energy density and fast release speed of (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric ceramics for pulsed capacitors[J]. J Alloy Compd, 2017, 721: 191–198.
[15] DAI X, VIEHLAND D. Effects of lanthanum modification on the antiferroelectric–ferroelectric stability of high zirconium-content lead zirconate titanate[J]. J Appl Phys, 1994, 76(6): 3701–3709.
[16] 刘鹏, 姚熹. La调节Pb(Zr, Sn, Ti)O3反铁电陶瓷的相变与电学性质. 物理学报 2002: 1621–7.
LIU Peng, YAO Xi. La adjusts the phase transition and electrical properties of Pb(Zr, Sn, Ti)O3 antiferroelectric ceramics[J]. J Phys, 2002: 1621–7.
[17] MISCHENKO A S, ZHANG Q, WHATMORE R W, et al. Giant electrocaloric effect in the thin film relaxor ferroelectric 0.9PbMg1∕3Nb2∕3O3–0.1PbTiO3 near room temperature[J]. Appl Phys Lett, 2006, 89(24): 242912.
[18] CHAO M, LIU J, ZENG M, et al. High discharge efficiency of (Sr, Pb, Bi)TiO3 relaxor ceramics for energy-storage application[J]. Appl Phys Lett, 2018, 112(20): 203903.
[19] HAERTLING G H. PLZT electrooptic materials and applications—a review[J]. Ferroelectrics, 1987, 75(1): 25–55. 
[20] XIN C, ZHANG J, LIU Y, et al. Polymorphism and dielectric properties of Sc-doped BaTiO3 nanopowders synthesized by sol–gel method[J]. Mater Res Bull, 2013, 48(6): 2220–2226.
[21] 李江, 路标, 鲁圣国, 等. 锡钛酸钡BaSnxTi1–xO3厚膜陶瓷的大电卡效应.硅酸盐学报, 2018, 46 : 1183–1190.
LI Jiang, LU Biao, LU Shengguo, et al. J Chin Ceram Soc, 2018, 46: 1183–1190.
[22] LU B, LI P, TANG Z, et al. Large electrocaloric effect in relaxor ferroelectric and antiferroelectric lanthanum doped lead zirconate titanate ceramics[J]. Sci Rep, 2017, 7(1).
[23] CHEN M, YAO X, ZHANG L. Grain size dependence of dielectric and field-induced strain properties of chemical prepared (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric ceramics[J]. Ceram Int, 2002, 28(2): 201–207.
[24] TANG X G, CHEW K H, CHAN H L W. Diffuse phase transition and dielectric tunability of Ba(ZryTi1–y)O3 relaxor ferroelectric ceramics[J]. Acta Mater, 2004, 52(17): 5177–5183.
[25] SHEN J, WANG X, YANG T, et al. High discharge energy density and fast release speed of (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric ceramics for pulsed capacitors[J]. J Alloy Compd, 2017, 721: 191–198. 
[26] JIN L, LI F, ZHANG S J. Decoding the fingerprint of ferroelectricloops: comprehension of the material properties and structures[J]. J Am Ceram Soc, 2014, 97(1): 1–27.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com