首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
冷等静压压强对激光选区烧结制备多孔SiC(w)/Si3N4陶瓷性能的影响
作者:李国锐 吴甲民 李晨辉 陈安南 刘荣臻 袁定坤 
单位:(华中科技大学材料科学与工程学院 材料成形与模具技术国家重点实验室 武汉 430074) 
关键词:氮化硅 碳化硅晶须 激光选区烧结 冷等静压 多孔陶瓷 
分类号:TB321
出版年,卷(期):页码:2019,47(6):0-0
DOI:
摘要:

 利用激光选区烧结(SLS)技术制备多孔SiC(w)/Si3N4陶瓷素坯,对素坯进行冷等静压(CIP)处理以改善其性能,探索CIP压强对SLS制备的多孔SiC(w)/Si3N4陶瓷性能的影响。以Si3N4为原料,加入10% (质量分数)的SiC晶须,制备出适用于SLS的复合粉末,利用最佳SLS成型参数打印4组素坯,分别进行压强为100、150、200和250 MPa的CIP处理,经排胶及高温气氛烧结后得到多孔SiC(w)/Si3N4陶瓷。结果表明:随着CIP压强增大,素坯孔隙率减小,抗弯强度增大,而陶瓷的收缩率增大,孔隙率减小,抗弯强度增大。SiC(w)/Si3N4多孔陶瓷在250 MPa下性能最优,其Z方向收缩率、孔隙率和抗弯强度分别达到35.32%、41.19%和18.6 MPa。

 

 Porous SiC(w)/Si3N4 ceramics were prepared by a laser selective sintering (SLS) technology, and its mechanical properties of SLSed green bodies were improved by a cold isostatic pressure (CIP) technology. The effect of CIP pressure on the properties of SiC(w) /Si3N4 porous ceramics prepared by SLS was investigated. Silicon nitride powder was used as a raw material and SiC whiskers of 10% (in mass fraction) were added. The composite powder suitable for SLS printing prepared was used to prepare 4 groups of green bodies at optimal SLS parameters, and the green bodies were treated at different CIP pressures (i.e., 100, 150, 200 and 250 MPa). The results show that the bending strength of the green bodies increases, while the porosity decreases with the increase of CIP pressure. Furthermore, the shrinkage and porosity of the sintered bodies decrease, while the linear shrinkage and the bending strength increase with the increase of CIP pressure. The sintered bodies have the optimum performance at a CIP pressure of 250 MPa, in which the shrinkage of Z direction, the porosity and the bending strength are 35.32%, 41.19% and 18.6 MPa, respectively.

基金项目:
国家自然科学基金(51605177);中央高校基本科研业务费专项资金(2018KFYYXJJ030)。
作者简介:
参考文献:

 [1] GILEV V G. Making hollow cylindrical products of high-porosity silicon nitride by the centrifugal forming of granules of a thixotropic thermoplastic slip[J]. Refract Ind Ceram, 2016, 56(5): 538–543. 

[2] ALEM A, PUGH M D, DREW R A L. Open-cell reaction bonded silicon nitride foams: Fabrication and characterization[J]. J Eur Ceram Soc, 2014, 34(3): 599–609. 
[3] ZENG W, GAN X, LI Z, et al. The preparation of silicon nitride ceramics by gelcasting and pressureless sintering[J]. Ceram Int, 2016, 42(10): 11593–11597. 
[4] KALEMTAS A, TOPATES G, ÖZCOBAN H, et al. Mechanical characterization of highly porous β-Si3N4 ceramics fabricated via partial sintering & starch addition[J]. J Eur Ceram Soc, 2013, 33(9): 1507–1515. 
[5] FAN L, ZHOU M, WANG H, et al. Low-temperature preparation of β-Si3N4 porous ceramics with a small amount of Li2O–Y2O3[J]. J Am Ceram Soc, 2014, 97(5): 1371–1374. 
[6] YIN L Y, ZHOU X G, YU J S, et al. New consolidation process inspired from making steamed bread to prepare Si3N4 foams by protein foaming method[J]. J Eur Ceram Soc, 2013, 33(7): 1387–1392. 
[7] YANG J F, ZHANG G J, NAOKI KONDO, et al. Synthesis of porous Si3N4 ceramics with rod-shaped pore structure[J]. J Am Ceram Soc, 2010, 88(4): 1030–1032. 
[8] LU X, WEI Y, WANG H, et al. Porosity and oxide layer dependence of thermal shock behavior of porous silicon nitride ceramics[J]. J Mater Sci Technol, 2014, 30(12): 1217–1222. 
[9] SHAN S Y, YANG J F, GAO J Q, et al. Porous silicon nitride ceramics prepared by reduction-nitridation of silica[J]. J Am Ceram Soc, 2005, 88(9): 2594–2596. 
[10] CANO I G, BOROVINSKAYA I P, RODRIGUEZ M A, et al. Effect of dilution and porosity on self-propagating high-temperature synthesis of silicon nitride[J]. J Am Ceram Soc, 2010, 85(9): 2209–2211. 
[11] WAN T, YAO D, YIN J, et al. The microstructure and mechanical properties of porous silicon nitride ceramics prepared via novel aqueous gelcasting[J]. Int J Appl Ceram Tec, 2015, 12(5): 932–938. 
[12] WU J M, ZHANG X Y, YANG J L. Novel porous Si3N4 ceramics prepared by aqueous gelcasting using Si3N4 poly-hollow microspheres as pore-forming agent[J]. J Eur Ceram Soc, 2014, 34(5): 1089–1096. 
[13] WU J M, ZHANG X Y, XU J, et al. Preparation of porous Si3N4 ceramics via tailoring solid loading of Si3N4 slurry and Si3N4 poly-hollow microsphere content[J]. J Adv Ceram, 2015, 4(4): 260–266. 
[14] ZHOU J, FAN J P, SUN G L, et al. Preparation and properties of porous silicon nitride ceramics with uniform spherical pores by improved pore-forming agent method[J]. J Alloy Compd, 2015, 632(1): 655–660. 
[15] 鲁元, 杨建锋, 李京龙. 碳热还原–反应烧结法制备多孔氮化硅陶瓷[J]. 无机材料学报, 2013, 28(5): 469–473. 
LU Y, YANG J F, LI J L. J Inorg Mater (in Chinese), 2013, 28(5): 469–473. 
[16] 王鹏举, 吴玉萍, 应国兵, 等. 凝胶注模技术制备高强度多孔氮化硅陶瓷[J]. 硅酸盐学报, 2014, 42(12): 1496–1500. 
WANG P J, WU Y P, YING G B, et al. J Chin Ceram Soc, 2014, 42(12): 1496–1500. 
[17] FINA F, MADLA C M, GOYANES A, et al. Fabricating 3D printed orally disintegrating printlets using selective laser sintering[J]. Int J Pharm, 2018, 541(1–2). 
[18] CHEN A N, WU J M, LIU K, et al. High-performance ceramic parts with complex shape prepared by selective laser sintering: a review[J]. Adv Appl Ceram, 2018, 117(2): 100–117. 
[19] 史玉升, 鲁中良, 章文献, 等. 选择性激光熔化快速成形技术与装备[J]. 中国表面工程, 2006, 19(z1): 150–153. 
SHI Y S, LU Z L, ZHANG W X, et al. Chin Surf Eng (in Chinese), 2006, 19(z1): 150–153. 
[20] 宫玉玺, 王庆顺, 朱丽娟, 等. 选择性激光烧结成形设备及原材料的研究现状[J]. 铸造, 2017, 66(3): 258–262. 
GONG Y X, WANG Q S, ZHU L J, et al. Chin Foundr (in Chinese), 2017, 66(3): 258–262. 
[21] LIU D, GAO Y, LIU J, et al. SiC whisker reinforced ZrO2 composites prepared by flash-sintering[J]. J Eur Ceram Soc, 2016, 36(8): 2051–2055. 
[22] FENG H, ZHONG Z, FENG Z, et al. Preparation and characterization of SiC whisker-reinforced SiC porous ceramics for hot gas filtration[J]. Ind Eng Chem Res, 2015, 54(1): 226–232. 
[23] 黄勇, 汪长安. 高性能多相复合陶瓷[M]. 北京: 清华大学出版社, 2008. 2. 
[24] 张卫珂, 常杰, 张敏, 等. SiC晶须增韧B4C–Si复合陶瓷材料[J]. 陶瓷学报, 2014, 35(1): 62–65. 
ZHANG W K, CHANG J, ZHANG M, et al. J Ceram (in Chinese), 2014, 35(1): 62–65. 
[25] FU Y, TAO Z, HOU X. Weibull distribution of the fracture strength of 99% alumina ceramic reshaped by cold isostatic pressing[J]. Ceram Int, 2014, 40(6): 7661–7667. 
[26] LUKIANOVA O. Mechanical and elastic properties of new silicon nitride ceramics produced by cold isostatic pressing and free sintering[J]. Ceram Int, 2015, 41(10): 13716–13720. 
[27] WANG Z, SHI Y, HE W, et al. Compound process of selective laser processed alumina parts densified by cold isostatic pressing and solid state sintering: Experiments full process simulation and parameter optimization[J]. Ceram Int, 2015, 41(2): 3245–3253. 
[28] 夏思婕. 碳化硅粉末激光选区烧结/冷等静压复合工艺及其后处理研究[D]. 武汉: 华中科技大学, 2016. 
XIA S J. Fabricating silicon carbide parts by selective laser sintering/ cold isostatic pressing and post process (in Chinese, dissertation). Wuhan: Huazhong University of Science and Technology, 2016. 
[29] 刘凯. 陶瓷粉末激光烧结/冷等静压复合成形技术研究[D]. 武汉: 华中科技大学, 2014. 
LIU K. Investigation on the hybrid technology of laser sintering/ cold isostatic pressing about ceramic powder (in Chinese, dissertation). Wuhan: Huazhong University of Science and Technology, 2014.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com