[1] ZIEGLER A, IDROBO J C, CINIBULK M K, et al. Interface structure and atomic bonding characteristics in silicon nitride ceramics[J], Science, 2004, 306: 1768–1770.
[2] DAI J H, LI J B, CHEN Y J, et al. Effect of the residual phases in β-Si3N4 seed on the mechanical properties of self-reinforced Si3N4 ceramics[J]. J Eur Ceram Soc, 2003, 23(9): 1543–1547.
[3] BAL BS, KHANDKAR A, LAKSHMINARAYANAN R, et al. Fabrication and testing of silicon nitride bearings in total hip arthroplasty[J]. J Arthroplasty, 2009, 24(1): 110–116.
[4] WANG C M, PAN X Q, RUJLE M, et al. Silicon nitride crystal structure and observations of lattice defects[J]. J Mater Sci, 1996, 31: 5281–5298.
[5] NAOTO H, AKIRA O, KAZUO M. Sintering of Si3N4 with the addition of rare-earth oxides[J]. J Am Ceram Soc, 1988, 71(3): 365–372.
[6] KLEEBE H J, PEZZOTTI G, ZIEGLER G. Microstructure and fracture toughness of Si3N4 ceramics: combined roles of grain morphology and secondary phase chemistry[J]. J Am Ceram Soc, 1999, 82(7): 1857–1867.
[7] DAI J H, LI J B, CHEN Y J. The phase transformation behavior of Si3N4 with single Re2O3 (Re = Ce, Nd, Sm, Eu, Gd, Dy, Er, Yb) additive[J]. Mater Chem Phys, 2003, 80(1): 356–359.
[8] KITAYAMA M, HIRAO K, WATARI K, et al. Thermal conductivity of β-Si3N4: III, effect of rare-earth (RE= La, Nd, Gd, Y, Yb, and Sc) oxide additives[J]. J Am Ceram Soc, 2001, 84(2): 353–358.
[9] MELENDEZ-MARTINEZ J J, DOMINGUEZ-RODRIGUEZ A. Creep of silicon nitride[J]. Prog Mater Sci, 2004, 49(1): 19–107.
[10] SJIBATA N, PAINTER G S, SATET R L, et al. Rare-earth adsorption at intergranular interfaces in silicon nitride ceramics: subnanometer observations and theory[J]. Phys Rev B, 2005, 72(14): 140101(R).
[11] BECHER P F, PAINTER G S, SHIBATA N, et al. Effects of rare earth (RE) interganular adsorption on the phase transformation, microstructure evolution, and mechniacl properties in silicon nitride with RE2O3+MgO Additives: RE= La, Gd, and Lu[J]. J Am Ceram Soc, 2008, 91(7): 2328–2336.
[12] MIKIJELJ B, NAWAZ Z, KRUZIC J J, et al. Intergranular nanostructure effects on strength and toughness of Si3N4[J]. J Am Ceram Soc, 2015, 98(5): 1650–1657.
[13] ISO 14704-2016, Fine Ceramics (advanced ceramics, advanced technical ceramics)—test method for flexural strength of monolithic ceramics at room temperature[S]. Switzerland: ISO, 2016.
[14] AHMAD I, CAO H Z, CHEN H H, et al. Carbon nanotube toughened aluminium oxide nanocomposite[J]. J Eur Ceram Soc, 2010, 30(4): 865–873.
[15] HONMA T, UKYO Y. Sintering Process of Si3N4 with Y2O3 and Al2O3 as sintering additives[J]. J Mater Sci Lett, 1999, 18 (9): 735–737.
[16] BECHER P F, FERBER M K. Temperature-dependent viscosity of SiREAl-based glasses as a function of N: O and RE: Al ratios (RE=La, Gd, Y, and Lu)[J]. J Am Ceram Soc, 2004, 87(7): 1274–1279.
[17] SUN E Y, BECHER P F, PLUCKNETT K P, et al. Microstructural design of silicon nitride with improved fracture toughness: II, effects of yttria and alumina additives[J]. J Am Ceram Soc, 1998, 81(11): 2831–2840.
|