首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
Gd2O3对O’-Sialon/Si3N4复相陶瓷结构与性能的影响
作者:徐晓虹 米凯峰 吴建锋     朱光意 
单位:(武汉理工大学 硅酸盐建筑材料国家重点实验室 武汉 430070) 
关键词:氮化硅 黑刚玉 氧化钆 塞隆/氮化硅复相陶瓷 显微结构 
分类号:TQ174.75
出版年,卷(期):页码:2019,47(6):0-0
DOI:
摘要:

 以α-Si3N4粉和黑刚玉为原料、Gd2O3为烧结助剂,采用无压烧结工艺制备了O’-Sialon/Si3N4复相陶瓷材料,研究了Gd2O3添加量和烧结温度对样品性能、相组成和显微结构的影响,探讨了Gd2O3对复相陶瓷的作用机理。结果表明:复相陶瓷主晶相为α-Si3N4、β-Si3N4和O’-Sialon,添加Gd2O3一方面可在高温烧结过程中形成液相,促进α-Si3N4的“溶解–析出”过程,有利于α-Si3N4向β-Si3N4的晶型转变以及β-Si3N4晶粒的生长;另一方面可促进α-Si3N4与Al2O3和SiO2的固溶反应,生成O’-Sialon相,使样品中O’-Sialon含量增加。当Gd2O3添加量为6%(质量分数)时,经1 600 ℃烧结的样品SN-G6性能最佳:气孔率为23.29%;体积密度为2.31 g•cm–3;抗折强度达到105.57 MPa

  O’-Sialon/Si3N4 composite ceramics were preparated by a pressureless sintering method using α-Si3N4 and black corundum as starting materials, and Gd2O3 as a sintering additive. Effects of Gd2O3 content and sintering temperature on the physical properties, phase composition and microstructure of samples were investigated. The results reveal that the main phase compositions of sintered samples are α-Si3N4, β-Si3N4 and O’-Sialon. Adding Gd2O3 can promote the formation of liquid phase during sintering,favoring the phase transformation of α-Si3N4 to β-Si3N4 and the growth of β-Si3N4 grains, as well as promoting α-Si3N4 for solid solution reaction with SiO2 and Al2O3 to generate O'-Sialon and increasing the content of O'-Sialon in the sample. Sample SN–G6 (Si3N4: 80%, black corundum: 20%, Gd2O3 addition: 6%) sintered at 1 600 ℃ has the optimum performance (i.e., apparent porosity of 23.29%, bulk density of 2.31 g•cm–3 and bending strength of 105.57 MPa).

 
基金项目:
国家“973”计划(2010CB227105)。
作者简介:
参考文献:

 [1] 吴建锋, 刘孟, 徐晓虹, 等. 塔式太阳能热发电吸热体材料研究进展[J]. 材料导报, 2013, 27(13): 57–61.

WU Jianfeng, LIU Meng, XU Xiaohong, et al. Mater Rew (in Chinese), 2013, 27(13): 57–61.
[2] 谢志鹏. 结构陶瓷[M]. 北京: 清华大学出版社, 2011.
[3] 王欢, 玄伟东, 杨治刚, 等. 氮化硅陶瓷的无压烧结工艺优化及性能研究[J]. 硅酸盐通报, 2016, 35(9): 2747–2752.
WANG Huan, XUAN Weidong, YANG Zhigang, et al. Bull Chin Ceram Soc (in Chinese), 2016, 35(9): 2747–2752.
[4] 杨亮亮, 谢志鹏, 李双. MgO–Al2O3–CeO2复合烧结助剂对放电等离子烧结氮化硅陶瓷致密化和性能的影响[J]. 硅酸盐学报, 2015, 43(12): 1712–1718.
YANG Liangliang, XIE Zhipeng, LI Shuang. J Chin Ceram Soc, 2015, 43(12): 1712–1718.
[5] DEELEY G G, HERBERT J M, MOORE N C. Dense silicon nitride[J]. Powder Metall, 1961, 4(8): 145–151.
[6] TATARKO P, LOJANOVÁ Š, DUSZA J, et al. Influence of various rare-earth oxide additives on microstructure and mechanical properties of silicon nitride based nanocomposites[J]. Mat Sci Eng A, 2010, 527(18–19): 4771–4778.
[7] GUEDES–SILVA C C, CARVALHO F M D S, BRESSIANI J C. Effect of rare earth oxides on properties of silicon nitride obtained by normal sintering and sinter–HIP[J]. J Rare Earths, 2012, 30(11): 1177–1183.
[8] YAMAMOTO H, AKIYAMA K, MURAKAMI Y. Densification behaviors and high-temperature characteristics of Si3N4 sintered bodies using Al2O3–Yb2O3 additives[J]. J Eur Ceram Soc, 2006, 26(6): 1059–1067.
[9] LIU T T, JIANG C F, GUO W. Effect of CeO2 on low temperature pressureless sintering of porous Si3N4 ceramics[J]. J Rare Earths, 2017, 35(2): 172–176.
[10] 白星亮, 乔瑞庆, 张翠敏. 低温无压烧结氮化硅陶瓷的相变及致密化研究[J]. 硅酸盐通报, 2016, 35(9): 3053–3056.
BAI Xingliang, QIAO Ruiqing, ZHANG Cuimin. Bull Chin Ceram Soc (in Chinese), 2016, 35(9): 3053–3056.
[11] WU J F, ZHANG Y X, XU X H, et al. Thermal shock resistance and oxidation behavior of in-situ synthesized MgAl2O4–Si3N4 composites used for solar heat absorber[J]. Ceram Int, 2016, 42(8): 10175–10183.
[12] WU J F, ZHANG Y X, XU X H, et al. Preparation and performance of β-Sialon/Si3N4 composite ceramics for solar heat absorber[J]. Appl Mech Mater, 2014, 692: 234–239.
[13] 黄继武, 李周. 多晶材料X射线衍射: 实验原理、方法与应用[M]. 冶金工业出版社, 2012.
[14] 徐晓虹, 管晓敏, 吴建锋, 等. 溶胶–凝胶法制备陶瓷喷墨打印用镨锆黄色料[J]. 硅酸盐学报, 2017, 45(6): 855–862.
XU Xiaohong, GUAN Xiaomin, WU Jianfeng, et al. J Chin Ceram Soc, 2017, 45(6): 855–862.
[15] 于俊杰, 管甲锁, 郭伟明, 等. 基于高SiO2含量的Si3N4基陶瓷显微结构与力学性能[J]. 硅酸盐学报, 2016, 44(12): 1713–1717.
YU Junjie, GUAN Jiasuo, GUO Weiming, et al. J Chin Ceram Soc, 2016, 44(12): 1713–1717.
[16] WU J F, ZHANG Y X, XU X H, et al. A novel in-situ β-Sialon/Si3N4 ceramic used for solar heat absorber[J]. Ceram Int, 2015, 41(10): 14440–14446.
[17] DUSZA J, MORGIEL J, DUSZOVÁ A, et al. Microstructure and fracture toughness of Si3N4 graphene platelet composites[J]. J Eur Ceram Soc, 2012, 32(12): 3389–3397.
[18] LOJANOVÁ S, TATARKO P, CHLUP Z, et al. Rare–earth element doped Si3N4/SiC micro/nano–composites–RT and HT mechanical properties[J]. J Eur Ceram Soc, 2010, 30(9): 1931–1944.
[19] LI W J, WU Y L, HUANG R X, et al. Effect of Si addition on the mechanical and thermal properties of sintered reaction bonded silicon nitride[J]. J Eur Ceram Soc, 2017, 37(15): 4491–4496.
[20] GU L, YUAN W H, LIAO R, et al. Effect of TiO2 addition on the microstructures, mechanical and dielectric properties of porous Si3N4–based ceramics[J]. Adv Appl Ceram, 2017, 116(6): 1–7.
[21] 王妍月, 刘新, 曲殿利, 等. 添加TiO2对反应烧结制备SiAlON的影响[J]. 耐火材料, 2018, 52(2): 109–113.
WANG Yanyue, LIU Xin, QU Dianli, et al. Refractories (in Chinese), 2018, 52(2): 109–113.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com