首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
硼硅酸盐玻璃钎料连接RB–SiC陶瓷的接头强化机理
作者:林盼盼1 于凯凯1 林铁松1  鹏1 刘守相2 徐李刚2 龙伟民3  丽3  佳3 
单位:(1. 哈尔滨工业大学 先进焊接与连接国家重点实验室 哈尔滨 150001 2. 北京无线电测量研究所 北京 100854  3. 郑州机械研究所 新型钎焊材料与技术国家重点实验室 郑州 450001) 
关键词:反应烧结碳化硅陶瓷 硼硅酸盐玻璃钎料 析晶 分相 剪切强度 
分类号:TG425.2
出版年,卷(期):页码:2019,47(6):0-0
DOI:
摘要:

 使用硼硅酸盐玻璃钎料(BS),在650~850 ℃温度范围内实现了反应烧结碳化硅(RB–SiC)材料的连接,通过控制连接接头中RB–SiC/BS界面的玻璃分相(富碱硼相)和玻璃焊缝中玻璃析晶相(钛酸盐晶体KNaTiO3)的数量和尺寸,有效缓释了接头中的残余应力,提高了连接强度,在T=750 ℃条件下获得钎焊接头抗剪强度的最高值为13.9 MPa。

 A reliable bonding of silicon carbide (RB–SiC) ceramic was obtained via sintering at 650–850 ℃with borosilicate glass braze (BS). The residual stress of joint is released due to the thermal mismatch when the size and number of the phase-separation (rich alkali boron phase) at the RB–SiC/BS interface and the crystallization (titanate crystal KNaTiO3) in the glass seam are controlled, thus improving the joint shear strength. A maximal shear strength (i.e., 13.9 MPa) of brazed joints is obtained at 750 ℃.

基金项目:
国家自然科学基金青年科学基金(51805112);河南省科技创新人才计划(174200510010);战略性国际科技创新合作重点专项(2016YFE0201300)。
作者简介:
参考文献:

 [1] 韩杰才, 张宇民, 赫晓东. 大尺寸轻型SiC光学反射镜研究进展[J]. 宇航学报, 2001, 22(6): 124–132.

HAN Jiecai, ZHANG Yumin, HE Xiaodong. J Astronautics (in Chinese), 2001, 22(6): 124–132.
[2] 李旭鹏, 石进峰, 王炜, 等. 大口径空间主反射镜拼接化结构技术综述[J]. 激光与光电子学进展, 2018, 55(3): 030002
LI Xupeng, SHI Jinfeng, WANG Wei, et al. Las Optoelect Prog (in Chinese), 2018, 55(3): 030002
[3] 张玉娣, 张长瑞, 周新贵, 等. SiC基陶瓷卫星反射镜研究进展[J]. 材料导报, 2002, 16(9): 37–39.
ZHANG Yudi, ZHANG Changrui, ZHOU Xingui, et al. Mater Rev (in Chinese), 2002, 16(9): 37–39.
[4] 高明星. 空间大口径光学主镜展开机构设计[D]. 哈尔滨:哈尔滨工业大学, 2016.
GAO Mingxing. The design of deplioyable mechanisms of space large aperture optical primary mirror (in Chinese, dissertation). Harbin: Harbin Institute of technology, 2016.
[5] 包奇红, 沙巍, 陈长征, 等. 空间SiC反射镜背部中心支撑特性[J]. 光子学报, 2017, 46(2): 22–31.
BAO Qihong, SHA Wei, CHEN Changzheng, et al. Acta Phot Sin (in Chinese), 2017, 46(2): 22–31.
[6] XU H, GUAN Y J. Structural design of 1 m diameter space mirror component of space camera[J]. Opt Precis Eng, 2013, 21(6): 1488–1495.
[7] LIU Y, QI Q, ZHUY, et al. Microstructure and joining strength evaluation of SiC/SiC joints brazed with SiCp/Ag–Cu–Ti hybrid tapes[J]. J Adhes Sci Technol, 2015, 29(15): 1563–1571.
[8] PIPIT F, ARIFIN S, JEONG D H, et al. Joining of SiC monoliths using a thin MAX phase tape and the elimination of joining layer by solid-state diffusion[J]. J Eur Ceram Soc, 2018, 38: 3433–3440.
[9] YANG H, ZHOU X, SHI W, et al. Thickness–dependent phase evolution and bonding strength of SiC ceramics joints with active Ti interlayer[J]. J Eur Ceram Soc, 2017, 37: 1233–1241.
[10] CASALEGNO V, KONDO S, HINOKI T, et al. CaO–Al2O3 glass–ceramic as a joining material for SiC based components: A microstructural study of the effect of Si–ion irradiation[J]. J Nucl Mater, 2018, 501: 172–180.
[11] FAN S, LIU J, MA X, et al. Microstructure and properties of SiCf/SiC joint brazed by Y–Al–Si–O glass[J]. Ceram Int, 2018, 44: 8656–8663.
[12] AHMAD S, HERRMANN M, MAHMOUD M M, et al. Application of Nd2O3–Al2O3–SiO2 glass solder for joining of silicon carbide components[J]. J Eur Ceram Soc, 2016, 36: 1559–1569.
[13] FERRARIS M, CASALEGNO V, RIZZO S. et al. Effects of neutron irradiation on glass ceramics as pressure–less joining materials for SiC based components for nuclear applications[J]. J Nucl Mater, 2012, 429: 166–172.
[14] LUO Z, JIANG D, ZHANG J, et al. Joining of sintered silicon carbide ceramics using sodium borosilicate glass as the solder[J]. Int J Appl Ceram Technol, 2012, 9(4): 742–750.
[15] 徐建梅, 谭劲. Na2O–B2O3–SiO2玻璃分相结构与工艺的关系[J]. 非金属矿, 2001(b11): 41–42.
XU Jianmei, TAN Jin. Non–Metalli Mines (in Chinese), 2001(b11): 41–42.
[16] LIN P P, LIN T S, HE P, et al. Wetting behavior and bonding characteristics of bismuth–based glass brazes used to join Li–Ti ferrite systems[J]. Ceram Int, 2017, 43: 13530–13540.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com