首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
pH值对SnO2/ZnO形貌及光催化性能的影响
作者: 艳1 2 姚秉华1 曹宝月2  薇1  璇2 
单位:(1. 西安理工大学材料科学与与工程学院 陕西 西安 710048  2. 商洛学院化学工程与现代材料学院 陕西省尾矿资源综合利用重点实验室 陕西 商洛 726000) 
关键词:氧化锡/氧化锌 pH值 形貌 光催化活性 
分类号:TQ174
出版年,卷(期):页码:2019,47(6):0-0
DOI:
摘要:

 为考察酸度对SnO2/ZnO样品的形貌及光催化活性的影响,以氯化锌和四氯化锡为原料,采用水热反应法在不同酸度条件下制备系列SnO2/ZnO,并以亚甲基蓝作为目标降解物测试SnO2/ZnO的光催化活性。采用Fourier红外光谱仪、X射线衍射仪、扫描电子显微镜、紫外可见漫反射光谱仪、X光电子能谱仪、荧光发射光谱及N2吸附–脱附技术对SnO2/ZnO进行表征。结果表明:通过调节反应溶液酸度可得到粒状、立方体和球状等不同形貌的SnO2/ZnO复合材料。光催化实验表明:SnO2/ZnO系列样品的光催化活性均高于ZnO和SnO2,在pH值为9的条件下制备的具有立方体结构的样品(Zn-9)光催化效果最好,光照70 min对10 mg/L亚甲基蓝溶液的降解率达97.5%,循环使用5次后依然保持较高的光催化活性。

 To investigate the influence of solution pH value on the morphology and photo-catalytic activity of SnO2/ZnO, zinc chloride and tin tetrachloride were used as raw materials and a series of SnO2/ZnO materials were synthesized by a hydrothermal method at different solution pH values. Methylene blue (MB), as a photocatalytic degradation target, was used to evaluate the photocatalytic performance of SnO2/ZnO. The samples were characterized by Fourier transformed infrared spectroscopy, X-ray diffraction, scanning electronic microscopy, ultraviolet-visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, photoluminescence spectroscopy and N2 adsorption–desorption isotherms, respectively. The results show that the various morphologies of SnO2/ZnO, such as granular, cubic and spherical, can be obtained via changing the acidity of reaction solution. In addition, the photodegradation experiments show that the photocatalytic activity of all SnO2/ZnO samples is all greater than that of pure ZnO and SnO2. The sample (Zn-9) prepared at pH value 9 with a cubic-like morphology has the optimum best photocatalytic activity for the degradation MB (10 mg/L) and can reach 97.5% of degradation rate in 70 min, which remains a better photocatalytic activity after five cycles.

 
基金项目:
作者简介:
参考文献:

 [1] MALATO S, FERNÁNDEZ-IBÁÑEZ P, MALDONADO M I, et a1. Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends[J]. Catal Today, 2009, 147(1): 1–59.

[2] 周武艺, 唐绍裘, 张世英, 等. 制备不同稀土掺杂的纳米氧化钛光催化剂及其光催化活性[J]. 硅酸盐学报, 2004, 32(10): 1203–1208.
ZHOU Wuyi, TANG Shaoqiu, ZHANG Shiying, et al. J Chin Ceram Soc, 2004, 32(10): 1203–1208.
[3] KARUNAKARAN C, VINAYAGAMOORTHY P. Superparamagnetic core/shell Fe2O3/ZnO nanosheets as photocatalyst cum bactericide[J]. Catal Today, 2017, 284: 114–120.
[4] HARISH S, ARCHANA J, SABARINATHAN M, et a1. Controlled structural and compositional characteristic of visible light active ZnO/CuO photocatalyst for the degradation of organic pollutant[J]. Appl Surf Sci, 2017, 418: 103–112.
[5] 汪滨, 张广心, 郑水林, 等. Ce掺杂纳米TiO2/硅藻土复合材料的光催化性能[J]. 硅酸盐学报, 2016, 44(8): 1192–1199.
WANG Bing, ZHANG Guangxin, ZHENG Shuilin, et al. J Chin Ceram Soc, 2016, 44(8): 1192–1199.
[6] 何霞, 刘海瑞, 董海亮, 等. ZnO/In2O3纳米异质结的合成及其光催化性能的研究[J]. 无机材料学报, 2014, 3(29): 264–268.
HE Xia, LIU Hairui, DONG Hailiang, et al. J Inorg Mater (in Chinese), 2014, 3(29): 264–268.
[7] RADZIMSKA A K , JESIONOWSKI T. Zinc oxide—from synthesis to application: A review[J]. Materials, 2014, 7(4): 2833–2881.
[8] DAS S, JAYARAMAN V. SnO2: A comprehensive review on structures and gas sensors[J]. Prog Mater Sci, 2015, 46(23): 112–255.
[9] KAR A, SAIN S, ROSSOUW D, KNAPPETT B R, et a1. Facile synthesis of SnO2–PbS nanocomposites with controlled structure for applications in photocatalysis[J]. Nanoscale, 2016, 8(5): 2727–2739.
[10] CAO L , SPIESS F J , HUANG A A, et al. Heterogeneous photocatalytic oxidation of 1-Butene on SnO2 and TiO2 films[J]. J Phys Chem B, 1999, 103(15): 2912–2917.
[11] LIAO X, CHEN J, WANG M, LIU Z, et a1. Enhanced photocatalytic and photoelectrochemical activities of SnO2/SiC nanowire heterostructure photocatalysts[J]. J Alloys Compd, 2016, 658(2): 642–648.
[12] LAMBA R, UMAR A, MEHTA S K, et a1. Well-crystalline porous ZnO-SnO2 nanosheets an effective visible-light driven photocatalyst and highly sensitive smart sensor material[J]. Talanta, 2015, 131: 490–498.
[13] LAMBA R, UMAR A, MEHTA S K, et a1. ZnO doped SnO2 nanoparticles heterojunction photocatalyst for environmental remediation[J]. J Alloys Compd, 2015, 653: 327–333.
[14] WANG W W, ZHU Y J, YANG L X. ZnO–SnO2 hollow spheres and hierarchical nanosheets: Hydrothermal preparation, formation mechanism and photocatalytic properties[J]. Adv Funct Mater, 2010, 17(1): 59–64.
[15] HAMROUNI A, MOUSSA N, PARRINO F, et a1. Sol–gel synthesis and photocatalytic activity of ZnO–SnO2 nanocomposites[J]. J Mol Catal A, 2014, 390(8): 133–141.
[16] JIN C Q, GE C H, JIAN Z G, et al. Facile synthesis and high photocatalytic degradation performance of ZnO–SnO2 hollow spheres[J]. Nanoscale Res Lett, 2016, 11: 526–532.
[17] GORDILLO G, MORENO L C, DELACRUZ W, et al. Preparation and characterization of SnO2 thin films deposited by spray pyrolysis from SnCl2 and SnCl4 precursors[J]. Thin Solid Films, 1994, 252(1): 61–66.
[18] ZHANG B, YUN T, ZHANG J, et a1. The FTIR studies on the structural and electrical properties of SnO2: Films as a function of hydrofluoric acid concentration[J]. Optoelectron Adv Mater, 2010, 4(8): 1158–1162.
[19] PUSAWALE S N, DESHMUKH P R, LOKHANDE C D. Chemical synthesis and characterization of hydrous tin oxide thin films[J]. Bull Mater Sci, 2011, 34(6): 1179–1183.
[20] RAHMAN M M, GRUNER G, GHAMDI M S, et a1. Chemo-sensors development based on low-dimensional codoped Mn2O3-ZnO nanoparticles using flat-silver electrodes[J]. Chem Central J, 2013, 7(1): 60–60.
[21] 崔红卫, 张富春, 邵婷婷. Sn掺杂ZnO电子结构与光学性质的第一性原理研究[J]. 光学学报, 2016, 36(7): 204–212.
CUI Hongwei, ZHANG Fuchun, SHAO Tingting. Acta Opt Sini, 2016, 36(7): 204–212.
[22] SUN B, SIRRINGHAUS H. Surface tension and fluid flow driven self-assembly of ordered ZnO nanorod films for high-performance field effect transistors[J]. J Am Chem Soc, 2006, 128(50): 16231–16237.
[23] SING K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure Appl Chem, 1985, 57(4): 603–619.
[24] JO W K, SELVAM N C. Enhanced visible light driven photocatalytic performance of ZnO–g-C3N4 coupled with graphene oxide as a novel ternary nanocomposite[J]. J Hazard Mater, 2015, 299: 462–470.
[25] HUY T H, PHAT B D, KANG F, et a1. SnO2/TiO2 nanotube heterojunction: The first investigation of NO degradation by visible light driven photocatalysis[J]. Chemosphere, 2019, 215: 323–332.
[26] HSIEH P T, CHEN Y C, KAO K S, et a1. Luminescence mechanism of ZnO thin film investigated by XPS measurement[J]. Appl Phys A, 2008, 90: 317–321.
[27] WANG C, ZHAO J, WANG X, et al. Preparation characterization and photocatalytic activity of nano-sized ZnO/SnO2 coupled photocatalysts[J]. Appl Catal B: Environ, 2002, 39(3): 269–279.
[28] CHEN W, QIU Y, ZHONG Y, et al. High efficiency dye-sensitized solar cells based on the composite photoanodes of SnO2 nanoparticles/ZnO nanotetrapods[J]. J Phys Chem A, 2010, 114(9): 3127–3138.
[29] HAMROUN A, MOUSSA N, PARRINO F, et al. Sol–gel synthesis and photocatalytic activity of ZnO–SnO2 nanocomposites[J]. J Mol Catal A: Chem, 2014, 390: 133–141.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com