首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
高岭石改性及其对流化催化裂化催化剂性能的影响
作者:饶文秀 吕国诚 廖立兵 
单位:(中国地质大学(北京)材料科学与工程学院 北京 100083) 
关键词:高岭石 流化催化裂化催化剂 酸改性 热改性 
分类号:T013
出版年,卷(期):页码:2019,47(6):0-0
DOI:
摘要:

 综述了高岭石的改性方法及其对高岭石理化性能和流化催化裂化(FCC)催化剂性能的影响。FCC催化剂的主要活性中心是表面酸位,主要裂化场所是催化剂的孔隙及表面。高岭石的酸改性或热改性增加了高岭石比表面积和表面酸量,改变了高岭石表面酸位种类以及孔结构,进而提高了高岭石基FCC催化剂的催化裂化性能。对国内外高岭石改性研究进行系统总结,可为高岭石的改性及其在FCC催化剂中的应用提供参考。

 The modification of kaolinite and its effect on the catalytic cracking performance of fluid catalytic cracking (FCC) catalysts were reviewed. The main active site in the FCC catalyst are the surface acid sites. The main cracking sites are the pores and surfaces of the catalyst. It is indicated that the specific surface area and surface acid amount of kaolinite will increase, and the type of surface acid sites and pore structure change due to the modification or thermally modification of kaolinite. The modification of kaolinite can also promote the catalytic cracking performance of FCC catalysts. Also, some previous studies on the modification of kaolinite, which could provide a reference for the application of kaolinite in FCC catalysts and the optimization of FCC catalyst performance, were summarized.

基金项目:
国家重点研发计划项目子课题(2017YFB0310704),国家自然科学基金青年基金(51604248)。
作者简介:
参考文献:

 [1] 丁瑜洁. 炼油工业的现状及发展趋势[J]. 福建质量管理, 2017(13), 46. 

DING Yujie. Fujian Qual Manag (in Chinese), 2017(13), 46. 
[2] 白攀峰. 直馏汽油催化裂化技术的工业应用研究[D]. 西安: 西安石油大学, 2014. 
BAI Panfeng. Industrial application research of catalytic cracking technology of straight-run gasoline (in Chinese, dissertation). Xi'an: Xi'an Petroleum University, 2014. 
[3] 任会姝. 重油催化裂化装置用能分析及系统优化[D]. 青岛: 中国石油大学(华东), 2013. 
REN Huishu. Energy analysis and system optimization of heavy oil catalytic cracking unit (in Chinese, dissertation). Qingdao: China University of Petroleum (East China), 2013. 
[4] 李文斌, 王晓. 我国石油税制改革探讨-基于石油安全的角度[J]. 价格理论与实践, 2010(5): 59–60. 
LI Wenbin, WANG Xiao. Price Theor Pract (in Chinese), 2010(5): 59–60. 
[5] BHATTACHARYYA K, GUPTA S S. Influence of acid acitivation of kaolinite and montmorillonite on adsorptive removal of Cd (Ⅱ) from water[J]. Ind Eng Chem Res, 2007, 46(11): 3734–3742. 
[6] LKHAGVAJAV N, ZHANG Q, TSEDENDORJ T. Study of Ni–V load acid-modified calcined kaolin[J]. Wilson Bull, 2015, 15(2): 138. 
[7] 郭丽娜. 阳离子捕收剂对煤系高岭岩的浮选规律研究[D]. 太原: 太原理工大学, 2017. 
GUO Lina. Study on the flotation law of coal-based kaolinite by cationic collector (in Chinese, dissertation). Taiyuan: Taiyuan University of Technology, 2017. 
[8] LIU C H, DENG Y Q, PANG X M, et al. Characterization of FCC catalyst containing alkaline-modified kaolin and its performance[J]. Ind Catal, 2003, 11(7): 41–44. 
[9] LUSSIER R J. Acid-reacted metakaolin catalyst and catalyst support compositions[P]. US Patent,4843052. 1989–06–27. 
[10] 王宁生, 闫伟建, 孙书红. 高岭土改性及其在FCC催化剂中的应用[J]. 工业催化, 2007, 15(4): 14–16. 
WANG Ningsheng, YAN Weijian, SUN Shuhong. J Ind Catal (in Chinese), 2007, 15(4): 14–16. 
[11] THEOCHARIS C R, JACOB K J S, GRAY A C. Enhancement of Lewis acidity in layer aluminosilicates. Treatment with acetic acid[J]. Phys Chem Chem Phys, 1988, 84(5): 1509–1515. 
[12] RAVICHANDRAN J. Properties and catalytic activity of acid-modified montmorillonite and vermiculite[J]. Clays Clay Miner, 1997, 45(6): 854–858. 
[13] LUSSIER R J. Catalytic conversion of hydrocarbons[P]. US Patent, 2485626. 1949–10–25. 
[14] COLINA F G,  ESPLUGAS S,  COSTA J.  High temperature reaction of kaolin with inorganic acids[J]. Br Ceramic Trans, 2013, 100(5): 203–206. 
[15] KUMAR S, PANDA A K, SINGH R K. Preparation and characterization of acid and alkaline treated kaolin clay[J]. Bull Chem React Eng Catal, 2013, 8(1): 61–69. 
[16] 杨柏川, 张海鹏, 李伟. 酸改性高岭土在合成气一步法制备二甲醚中的应用[J]. 石油化工, 2009, 38(3): 234–239. 
YANG Baichuan, ZHANG Haipeng, LI Wei. Petrochemical (in Chinese), 2009, 38(3): 234–239. 
[17] VOLZONE C, ORTIGA J. SO2 gas adsorption by modified kaolin clays: Influence of previous heating and time acid treatments[J]. J Environ Management, 2011, 92(10): 2590–5. 
[18] DING S L, ZHANG L L, XU B H, et al. Review and prospect of surface modification of kaolin[J]. Adv Electron Mater, 2012, 430–432: 1382–1385. 
[19] AMBIKADEVI V R, LALITHAMBIKA M. Effect of organic acids on ferric iron removal from iron-stained kaolinite[J]. Appl Clay Sci, 2000, 16(3): 133–145. 
[20] ZENG X, ZHOU H, HU Y, et al. The silicon dissolution of kaolinite and illite by extracellular polysacchride and organic acid from bacillus mucilaginosus Lv1-2[J]. Adv Sci Lett, 2012, 5(2): 543–546. 
[21] JOSÉ D D M, COSTA T C D C, MEDEIROS A M D, et al. Effects of thermal and chemical treatments on physical properties of kaolinite[J]. Ceram Int, 2010, 36(1): 33–38. 
[22] 袁树来, 郑水林, 潘业林, 等. 中国煤系高岭岩(土)及加工利用[M]. 北京: 中国建材工业出版社. 2001. 194–195. 
[23] 郑水林, 李杨, 许霞. 温度对煤系煅烧高岭土物化性能影响的研究[J]. 硅酸盐学报, 2003, 31(4): 417–420. 
ZHENG Shuilin, LI Yang, XU Xia. J Chin Ceram Soc, 2003, 31(4): 417–420. 
[24] ROY R, ROY D M, FRANCIS E E. New data on thermal decomposition of kaolinite and halloysite[J]. J Am Ceram Soc, 1955, 38(6): 198–205. 
[25] SÁNCHEZ R. M T, BASALDELLA E I, MARCO J F. The effect of thermal and mechanical treatments on kaolinite: Characterization by XPS and IEP measurements[J]. J Colloid Interface Sci, 1999, 215(2): 339–344. 
[26] 孙涛, 陈洁渝, 周春宇, 等. 煅烧高岭土的比表面积与吸油性能[J]. 硅酸盐学报, 2013, 41(5): 685–690. 
SUN Tao, CHEN Jieyu, ZHOU Chunyu, et al. J Chin Ceram Soc, 2013, 41 (5): 685–690. 
[27] LIU X M, YAN Z F, WANG H P, et al. In situ synthesis of NAY zeolite with coal-based kaolin[J]. J Nat Gas Chem, 2003, 12(1): 63–70. 
[28] DAVIDOVITS J, SAWYER J L. Early high-strength mineral polymer[P]. US Patent, 4509985. 1985–04–09. 
[29] 叶舒展, 周彦豪, 陈福林. 高岭土表面改性研究进展[J]. 橡胶工业, 2004, 51(12): 759–765. 
YE Shuzhan, ZHOU Yanhao, CHEN Fulin. Rubber Ind (in Chinese), 2004, 51(12): 759–765. 
[30] BERGAYA F, DION P, ALCOVER J F, et al. TEM study of kaolinite thermal decomposition by controlled-rate thermal analysis[J]. J Mater Sci, 1996, 31(19): 5069–5075. 
[31] GAO Z, LI X, WU H, et al. Magnetic modification of acid-activated kaolin: Synthesis, characterization, and adsorptive properties[J]. Microporous Mesoporous Mater, 2015, 202: 1–7. 
[32] LUO J, JIANG T, LI G H, et al. Porous materials from thermally activated kaolinite: Preparation, characterization and application[J]. Mater, 2017, 10(6): 647. 
[33] TIMOFEEVA M N, PANCHENKO V N, VOLCHO K P, et al. Effect of acid modification of kaolin and metakaolin on Bronsted acidity and catalytic properties in the synthesis of octahydro-2H-chromen-4-ol from vanillin and isopulegol[J]. J Mol Catal A, 2016, 414: 160–166. 
[34] PANDA A K, MISHRA B G, MISHRA D K, et al. Effect of sulphuric acid treatment on the physico-chemical characteristics of kaolin clay[J]. Colloids Surf A, 2010, 363(1/2/3): 98–104. 
[35] LENARDA M, STORARO L, TALON A, et al. Solid acid catalysts from clays: Preparation of mesoporous catalysts by chemical activation of metakaolin under acid conditions[J]. J Colloid Interface Sci, 2007, 311(2): 537. 
[36] PERISSINOTTO M, LENARDA M, STORARO L, et al. Solid acid catalysts from clays: Acid leached metakaolin as isopropanol dehydration and 1-butene isomerization catalyst[J]. J Mol Catal A Chem, 1997, 121(1): 103–109. 
[37] LIMA P E A, ANGÉLICA R S, NEVES R F. Dissolution kinetics of Amazonian metakaolin in hydrochloric acid[J]. Clay Miner, 2017, 52(1): 75–82. 
[38] LI G H, CHENG W, JIANG T, et al. Preparation of porous silica by acid dissociation of thermally activated kaolinite[J]. Adv Mat Res, 2011, 284/285/286: 1381–1384. 
[39] BELVER C, VICENTE M A. Chemical activation of a kaolinite under acid and alkaline conditions[J]. Chem Mater, 2002, 14(5): 2033–2043. 
[40] VOLZONE C, JOSÉ Ortiga. Removal of gases by thermal-acid leached kaolinitic clays: Influence of mineralogical composition[J]. Appl Clay Sci, 2006, 32(1/2): 0–93. 
[41] CRISTÓBAL A, CASTELLÓ R, LVENGO A, et al. Angeles Martín Luengo, et al. Acid activation of mechanically and thermally modified kaolins[J]. Mater Res Bull, 2009, 44(11): 2103–2111. 
[42] 刘从华, 刘育. 改性高岭土性能研究: I. 酸性和催化活性[J]. 石油炼制与化工, 1999(4): 32–38. 
LIU Conghua, LIU Yu. Petrol Refin Chem Ind (in Chinese), 1999(4): 32–38. 
[43] 郝青丽, 陆路德. 机械研磨影响高岭石结构的光谱研究[J]. 光谱学与光谱分析, 20(3): 302–304. 
HAO Qingli, LU Lude. Spectrosc Spectr Anal (in Chinese), 20(3): 302–304. 
[44] RIBEIRO A M, JÚNIOR H F M, COSTA D A. Kaolin and commercial fcc catalysts in the cracking of loads of polypropylene under refinary conditions[J]. Braz J Chem Eng, 2013, 30(4): 825–834. 
[45] GARC?´A-MART?´NEZ J, LI K, KRISHNAIAHA G. A mesostructured Y zeolite as a superior FCC catalyst—from lab to refinery[J]. Chem Commun, 2012, 48(97): 11841. 
[46] HE M Y. The development of catalytic cracking catalysts: Acidic property related catalytic performance[J]. Catal Today, 2002, 73(1): 49–55. 
[47] HUO Y Q, WANG Z Y, WANG Y M, et al. Process for the production of LPG rich in olefins and high quality gasoline[P]. US Patent, 5326465. 1994–07–05. 
[48] AL-KHATTAF S. The influence of Y-zeolite unit cell size on the performance of FCC catalysts during gas oil catalytic cracking[J]. Appl Catal A Gen, 2002, 231(1): 293–306. 
[49] WALLENSTEIN D, KANZ B, HAAS A. Influence of coke deactivation and vanadium and nickel contamination on the performance of low ZSM-5 levels in FCC catalysts[J]. Appl Catal A Gen, 2000, 192(1): 105–123. 
[50] INO T, AL-KHATTAF S. Effect of unit cell size on the activity and selectivity of FCC catalysts[J]. Appl Catal A Gen, 2000, 142(1): 5–17. 
[51] LIU H H, ZHAO H J, GAO X H, et al. A novel FCC catalyst synthesized via in situ overgrowth of NAY zeolite on kaolin microspheres for maximizing propylene yield[J]. Catal Today, 2007, 125(3): 163–168. 
[52] LIU H, MA J, GAO X. Synthesis, characterization and evaluation of a novel resid FCC catalyst based on in situ synthesis on kaolin microspheres[J]. Catal Lett, 2006, 110(3/4): 229–234. 
[53] DIXIT J K, GHOSH S, KRISHNAN V, et al. Process for the preparation of fluidized catalytic cracking (FCC) catalyst[P]. US Patent, 6114267A. 2000–09–05. 
[54] 李爱英. 内蒙煤系硬质高岭土的改性及其在FCC催化剂中应用研究[D]. 天津: 天津大学, 1895. 
LI Aaiying. The modification of hard kaolin in Inner Mongolia and its application in FCC catalysts (in Chinese, disseration). Tianjin: Tianjin University, 1895. 
[55] QI Y P, CHEN S L, DONG P X, et al. Novel macroporous residua FCC catalysts[J]. J Fuel Chem Technol, 2006, 34(6): 685–690. 
[56] ZHENG S Q, SHAO R, YU H X, et al. Synthesis and application of a porous composite material synthesized via an in situ technique[J]. Clay Miner, 2015, 50(4): 525–535. 
[57] 郑淑琴, 何理均, 姚华, 等. 采用原位技术以滤渣与高岭土制备 FCC 催化剂[J]. 中国石油加工与石化技术, 2017, 19(1): 19–25. 
ZHENG Shuqin, HE Lijun, YAO Hua, et al. China Pet Process Pe (in Chinese), 2017, 19(1): 19–25. 
[58] 王栋, 唐玉龙, 刘涛, 等. 改性高岭土性能的研究[J]. 工业催化, 2014, 22 (2): 128–131. 
WANG Dong, TANG Yulong, LIU Tao, et al. Ind Catal (in Chinese), 2014, 22 (2): 128–131. 
[59] Wan G, Duan A, Zhang Y, et al. Zeolite beta synthesized with acid-treated metakaolin and its application in diesel hydrodesulfurization[J]. Catal Today, 2010, 149(1): 69–75. 
[60] VALÁŠKOVÁ M, BARABASZOVÁ K, HUNDÁKOVÁ M, et al. Effects of brief milling and acid treatment on two ordered and disordered kaolinite structures[J]. Applied Clay Sci, 2011, 54(1): 70–76. 
[61] PATRYLAK L,  LIKHNYOVSKYI R,  VYPYRAYLENKO V,  et al. Adsorption properties of zeolite-containing microspheres and fcc catalysts based on ukrainian kaolin[J]. Adsorp Sci Technol, 2001, 19(7): 525–540. 
[62] 孙书红, 马建泰, 庞新梅, 等. 高岭土微球合成 ZSM-5 沸石及其催化裂化性能[J]. 硅酸盐学报, 2006, 34(6): 757–761. 
SUN Shuhong, MA Jiantai, PANG Xinmei, et al. J Chin Ceram Soc, 2006, 34(6): 757–761.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com