首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
荷载-冻融耦合作用下充填层自密实混凝土的耐久性及损伤模型
作者:龙广成1 杨振雄1 白朝能2 马昆林1 谢友均1 
单位:(1. 中南大学土木工程学院 长沙410075 2. 中铁西安勘察设计研究院 西安710054) 
关键词:充填层自密实混凝土 荷载-冻融循环耦合作用 冻融循环 耐久性 本构模型 
分类号:TU528.53
出版年,卷(期):页码:2019,47(7):0-0
DOI:
摘要:

 为掌握处于冻融服役环境条件下充填层自密实混凝土(SCC)的耐久性,设计了轴压荷载-冻融耦合作用模拟试验,对比研究了SCC在冻融循环作用、荷载-冻融循环耦合作用下的质量、峰值应力、峰值应变等参数随冻融循环次数的变化规律;结合统计损伤理论,建立了相应的损伤本构模型,讨论了损伤变量与冻融循环作用次数的变化关系。结果表明:相较于单一冻融作用,1/3应力水平的轴压荷载与冻融循环耦合作用下的充填层自密实混凝土劣化速率更大,此时难以抵抗300次冻融循环作用,掺适量聚丙烯纤维或橡胶粉可较好改善其在荷载-冻融循环耦合作用下的耐久性。所建立的损伤本构模型可较好地描述荷载-冻融耦合作用后混凝土应力-应变关系,其损伤变量与冻融次数具有良好相关性。

 In order to understand the durability and performance deterioration of filling layer self-compacting concrete (SCC) after service under freeze-thaw conditions, the coupling action of freeze-thaw and axial compression load was simulated. The parameters including mass, peak stress and peak strain of SCC suffering freeze-thaw cycles and loading-freezing/thawing coupling action vary with the number of freeze-thaw cycles. Furthermore, a damage constitutive model was established based on the statistical damage theory, and a relationship between the damage variables and the number of freeze-thaw cycles was discussed. The results indicate that the degradation speed of filling layer self-compacting concrete subjected to the coupling action of 1/3 stress level axial compression load and freeze-thaw cycles are greater, in which it is difficult to resist 300 freeze-thaw cycles. The durability of filling layer self-compacting concrete blended with a suitable amount of polypropylene fiber or rubber powder can be improved when subjected to loading-freezing and thawing coupling action. The strain-stress characteristics of SCC were described by a damage constitutive model subjected to coupling action of freezing-thawing cycles and axial compression load. Also, the variables of freeze-thaw damage are correlated to the number of freeze-thaw cycles in this model.

 
基金项目:
国家自然基金项目(11790283,51678569,51678568)。
作者简介:
参考文献:

 [1] 宇晓, 张莹秋, 袁书成, 等. 混凝土抗冻耐久性能研究进展[J]. 混凝土, 2017, 4: 15–20.

YU Xiao, ZHANG Yingqiu, YUAN Shucheng, et al. Concrete (in Chinese), 2017, 4: 15–20.
[2] 邹超英, 赵娟, 梁锋, 等. 冻融作用后混凝土力学性能的衰减规律[J]. 建筑结构学报, 2008, 29(1): 117–123.
ZOU Chaoying, ZHAO Juan, LIANG Feng, et al. J Build Struct (in Chinese), 2008, 29(1): 117–123.
[3] WAWRZE?CZYK J, MOLENDOWSKA A. Evaluation of concrete resistance to freeze-thaw based on probabilistic analysis of damage[J]. Procedia Eng, 2017, 193: 35–41.
[4] 商怀帅, 曹磊, 王慧平, 等. 混凝土冻融损伤后双轴受力下的脆弹性损伤本构模型[J]. 江苏大学学报(自然科学版), 2014, 35(6): 727–731.
SHANG Huaishuai, CHAO Lei, WANG Huiping, et al. J Jiangsu Univ: Nat Sci Ed (in Chinese), 2014, 35(6): 727–731.
[5] MAYERCSIK N P, VANDAMME M, KURTIS K E. Assessing the efficiency of entrained air voids for freeze-thaw durability through modeling[J]. Cem Concr Res, 2016, 88: 43–59.
[6] 赵燕茹, 范晓奇, 王利强, 等. 不同冻融介质作用下混凝土力学性能衰减模型[J]. 复合材料学报, 2017, 34(2): 463–470.
ZHAO Yanru, FAN Xiaoqi, WANG Liqiang, et al. Acta Mater Compos Sin (in Chinese), 2017, 34(2): 463–470.
[7] 姚文杰, 庞建勇, 刘洋, 等. 聚丙烯纤维混凝土耐久性与冻融损伤模型研究[J]. 科学技术与工程, 2016, 16(21): 313–316.
YAO Wenjie, PANG Jianyong, LIU Yang, et al. Sci Technol Eng (in Chinese), 2016, 16(21): 313–316.
[8] KARAHAN O, ATI? C D. The durability properties of polypropylene fiber reinforced fly ash concrete[J]. Mater Des, 2011, 32(2): 1044–1049.
[9] RICHARDSON A E, COVENTRY K A, WILKINSON S. Freeze/thaw durability of concrete with synthetic fibre additions[J]. Cold Reg Sci Technol, 2012, 83/84(s 83/84): 49–56.
[10] RICHARDSON A, COVENTRY K, EDMONDSON V, et al. Crumb rubber used in concrete to provide freeze–thaw protection (optimal particle size)[J]. J Cleaner Prod, 2016, 112: 599–606.
[11] 马昆林, 龙广成, 谢友均, 等. 橡胶颗粒对自密实混凝土性能的影响[J]. 硅酸盐学报, 2014, 42(8): 966–973.
MA Kunlin, LONG Guangcheng, XIE Youjun, et al. J Chin Ceram Soc, 2014, 42(8): 966–973.
[12] 王燕茹. 轴压荷载—冻融对混凝土耐久性的耦合效应研究[D]. 青岛: 青岛理工大学, 2016.
WANG Yanru. Study on the durability of concrete suffer coupling effect of uniaxial compressive load and freeze-thaw cycles (in Chinese, dissetation). Qingdao: Qingdao University of Technology, 2016.
[13] JUN Tian, WENWEI Wanga, YINFEI Du. Damage behaviors of self-compacting concrete and prediction model under coupling effect of salt freeze-thaw and flexural load[J]. Constr Build Mater, 2016, 119: 241–250.
[14] WANG Boxin, WANG Fei, WANG Qing. Damage constitutive models of concrete under the coupling action of freeze–thaw cycles and load based on Lemaitre assumption[J]. Constr Build Mater, 2018, 173: 332–341.
[15] 郭寅川, 申爱琴, 何天钦, 等. 疲劳荷载和冻融循环耦合作用下路面混凝土微裂缝扩展行为[J]. 交通运输工程学报, 2016, 16(5): 1–9.
GUO Yinchuan, SHEN Aiqin, HE Tianqing, et al. J Traffic Transp Eng (in Chinese), 2016, 16(5): 1–9.
[16] SUN W, ZANG Y M, YAN H D. Damage and damage resistance of high Strength concrete under the action of load and freeze-thaw cycles[J]. Cem Concr Res, 1999, 29(9): 1519–1523.
[17] CHENG Y, ZHANG Y, JIAO Y, et al. Quantitative analysis of concrete property under effects of crack, freeze-thaw and carbonation[J]. Constr Build Mater, 2016, 129: 106–115.
[18] 罗小勇, 邹洪波, 周奇峰, 等. 压应力状态下混凝土抗冻性能的试验研究[J]. 建筑材料学报, 2013, 16(6): 1058–1062.
LUO Xiaoyong, ZOU Hongbo, ZHOU Qifeng, et al. J Build Mater (in Chinese), 2013, 16(6): 1058–1062.
[19] 代征征, 张鹏, 王燕茹, 等. 荷载与冻融作用下的混凝土毛细吸水性研究[J]. 低温建筑技术, 2017, 39(11): 24–27.
DA Zhengzheng, ZHANG Peng, WANG Yanru, et al. Low Temp Archit Technol (in Chinese), 2017, 39(11): 24–27.
[20] 曹大富, 富立志, 杨忠伟, 等. 冻融循环作用下混凝土受压本构特征研究[J]. 建筑材料学报, 2013, 16(1): 17–23.
CAO Dafu, FU Lizhi, YANG Zhongwei, et al. J Build Mater (in Chinese), 2013, 16(1): 17–23.
[21] 龙广成, 李宁, 谢友均, 等. 板式轨道充填层自密实混凝土的动态力学特性[J]. 铁道科学与工程学报, 2018, 15(6): 1363–1367.
LONG Guangcheng, LI Ning, XIE Youjun, et al. J Railw Sci Eng (in Chinese), 2018, 15(6): 1363–1367.
[22] 程红强, 高丹盈. 聚丙烯纤维混凝土冻融损伤试验研究[J]. 东南大学学报: 自然科学版, 2010, 40(A02): 197–200.
CHENG Hongqiang, GAO Danying. J Southeast Univ: Nat Sci Ed (in Chinese), 2010, 40(A02): 197–200.
[23] LEMAITRE J. How to use damage mechanics[J]. Nucl Eng Des, 1984, 80(2): 233–245.
[24] 余寿文. 损伤力学[M]. 北京: 清华大学出版社, 1997: 26–32.
[25] 曹文贵, 张升, 赵明华. 基于新型损伤定义的岩石损伤统计本构模型探讨[J]. 岩土力学, 2006, 27(1): 41–46.
CAO Wengui, ZHANG Sheng, ZHAO Minghua. Rock Soil Mech (in Chinese), 2006, 27(1): 41–46.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com