首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
氯盐溶液干湿循环条件下高延性水泥基复合材料微裂缝的自愈合特性与微观机理
作者:郭丽萍1 2 3 徐燕慧1  波4 柴丽娟1  聪1 费春广1 
单位:(1. 东南大学材料科学与工程学院 南京211189 2. 江苏省土木工程材料重点实验室 南京211189 3. 先进土木工程材料协同创新中心 南京211189 4. 南京水利科学研究院 水文水资源与水利工程科学国家重点实验室 南京210029) 
关键词:高延性水泥基复合材料 自愈合行为 标准化相对动弹性模量 弯曲韧性 
分类号:TU528
出版年,卷(期):页码:2019,47(7):0-0
DOI:
摘要:

 为了揭示服役于海洋环境下带微裂缝的高延性水泥基复合材料(HDCC)结构构件经历干湿循环后的自愈合特性,研究了不同预加载水平下带微裂缝的HDCC在氯盐溶液干湿循环后的自愈合行为。通过超声无损检测、弯曲性能试验评价了不同水胶比、不同预加载水平下HDCC的自愈合程度,探明了自愈合行为对HDCC弯曲韧性的影响规律;此外,采用差示扫描量热分析、环境扫描电子显微镜?能谱,揭示了带微裂缝HDCC自愈合的微观机理。结果表明:微裂缝中的反应产物主要为云状C-S-H凝胶及CaCO3结晶,同时发现了氯离子的侵蚀产物F盐。低水胶比的HDCC试件在低预加载水平下所经历的干湿循环周期越长,其自愈合效果越好。在重复加载时,伪初裂点使试件的开裂过程保持在较高的载荷水平,使得8次干湿循环后预加载HDCC试件在挠度低于对照组的情况下韧性仍可达到甚至超过对照组。

 

 In order to investigate the self-healing characteristics of pre-cracked high ductility cementitious composites (HDCC) after wet–dry cycles in marine environment, the self-healing extent of HDCC with different water to binder ratios (W/B) and preloading levels were examined. The effect of self-healing on the HDCC toughness was investigated through ultrasonic nondestructive test and four-point bending test. The self-healing mechanism was analyzed by differential scanning calorimeter  and an environmental scanning electron microscope-energy dispersive spectroscopy (ESEM-EDS). The results indicate that the self-healing products are mainly C-S-H gel and CaCO3 crystal, The Friedel salt also appears. The recovery ratio of pre-cracked HDCC is negatively correlated to W/B and preloading level, and positively to self-healing age. The pseudo first cracking point keeps the cracking process of HDCC at a relatively high load level when re-loaded, making the toughness of pre-cracked HDCC recover or even exceed the toughness of control group specimens after 8 cycles.

基金项目:
国家自然科学基金项目(51778133,51739008),国家重点基础研究发展计划(973计划)(2015CB655102);福建省交通运输科技项目(2017Y057);中央高校基本科研业务费专项资金资助
作者简介:
参考文献:

 [1] WEIMANN M B, LI V C. Drying shrinkage and crack width of engineered cementitious composites (ECC)[J]. Brittle Matrix Compos, 2003: 37?46.

[2] LI V C, WANG S. High early strength engineered cementitious composites[P]. US patent, US7799127. 2010-09-21.
[3] LI V C. Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite[J]. Aci Mater J, 2001, 98: 483?492.
[4] LI M, LI V C. Cracking and healing of engineered cementitious composites under chloride environment[J]. Aci Mater J, 2011, 108(3): 333?340.
[5] LI V C, 张亚梅. 高延性纤维增强水泥基复合材料的研究进展及应用[J]. 硅酸盐学报, 2007, 35(4): 531?536.
LI V C, ZHANG Y M. J Chin Ceram Soc, 2007, 35(4): 531?536.
[6] 徐世烺, 李贺东. 超高韧性水泥基复合材料研究进展及其工程应用[J]. 土木工程学报, 2008, 41(6): 45?60.
XU S L, LI H D. China Civil Eng J(inChinese), 2008, 41(6): 45?60.
[7] YU J H, CHEN W, YU M X, et al. The microstructure of self-healed PVA ECC under wet and dry cycles[J]. Mater Res, 2010, 13(2): 225?231.
[8] EDVARDSEN C. Water permeability and autogenous healing of cracks in concrete[J]. Aci Mater J, 1999, 96(4): 448?454.
[9] NEVILLE A. Autogenous healing-A concrete miracle?[J]. Concr Int, 2002, 24: 76?81.
[10] REINHARDT H W, JOOSS M. Permeability and self-healing of cracked concrete as a function of temperature and crack width[J]. Cem Concr Res, 2003, 33(7): 981?985.
[11] YANG Y, LEPECH M D, YANG E H, et al. Autogenous healing of engineered cementitious composites under wet–dry cycles[J]. Cem Concr Res, 2009, 39(5): 382?390.
[12] LI V C, SAKULICH A R, REINHARDT H W, et al. Recovery against mechanical actions[M]//Self-Healing Phenomena in Cement-Based Materials. Netherlands: Springer press, 2013:65?117.
[13] SNOECK D, TITTELBOOM K V, STEUPERAERT S, et al. Self -healing cementitious materials by the combination of microfibres and superabsorbent polymers[J]. J Intelligent Mater Syst Struct, 2014, 25(1): 13?24.
[14] HERBERT E N, LI V C. Self-Healing of microcracks in engineered cementitious composites (ECC) under a natural environment[J]. Materials, 2013, 6(7): 2831?2845.
[15] SURYANTO B, WILSON S A, MCCARTER W J, et al. Self-healing performance of engineered cementitious composites under natural environmental exposure[J]. Adv Cem Res, 2015, 28(4): 211?220.
[16] ALYOUSIF A, LACHEMI M, YILDIRIM G, et al. Effect of self-healing on the different transport properties of cementitious composites[J]. J Adv Concr Technol, 2015, 13(3): 112?123.
[17] LIU H, ZHANG Q, GU C, et al. Influence of microcrack self-healing behavior on the permeability of engineered cementitious composites[J]. Cem Concr Compos, 2017, 82: 14?22.
[18] LIU H, ZHANG Q, GU C, et al. Self-healing of microcracks in engineered cementitious composites under sulfate and chloride environment[J]. Constr Build Mater, 2017, 153: 948?956.
[19] KAN L L, SHI H S, SAKULICH A R, et al. Self-healing characterization of engineered cementitious composite materials[J]. Aci Mater J, 2010, 107(6): 617?624.
[20] JSCE-SF4: Method of test for flexural strength and flexural toughness of steel fiber reinforced concrete[S].Tokyo: Japan Concrete Institute, 1984.
[21] 魏风艳, 吕忆农, 兰祥辉, 等. 粉煤灰水泥基材料的水化产物[J]. 硅酸盐学报, 2005, 33(1): 52?56.
WEI F L, LÜ Y N, LAN X H, et al. J Chin Ceram Soc, 2005, 33(1): 52?56.
[22] 阚黎黎, 王明智, 史建武, 等. 超高韧性水泥基复合材料自愈合研究进展[J]. 功能材料, 2015, 46(5): 5001?5006.
KAN L L, WANG M Z, SHI J W, et al. J Funct Mater (in Chinese), 2015, 46(5): 5001?5006.
[23] 张云升, 孙伟, 郑克仁, 等. 水泥-粉煤灰浆体的水化反应进程[J]. 东南大学学报(自然科学版), 2006, 36(1): 118?123.
ZHANG Y S, SUN W, ZHENG K R, et al. J Southeast Univ: Nat Sci Ed (in Chinese), 2006, 36(1):118?123.
[24] 贾艳涛. 矿渣和粉煤灰水泥基材料的水化机理研究[D]. 南京: 东南大学, 2005.
JIA Y T. The hydration mechanismof the BFS and FA cement based materials(in Chinese, dissertation). Nanjing: Southeast University, 2005.
[25] MA J, LI Z, ZHANG Y, et al. Desilication of sodium aluminate solution by Friedel's salt [J]. Hydrometallurgy, 2009, 99(3): 225?230.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com