首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
蒸养条件下镍渣水泥胶砂的水化产物与力学性能
作者:李保亮     张亚梅 
单位:(东南大学材料科学与工程学院 江苏省土木工程材料重点实验室 南京 211189) 
关键词:镍渣 水泥 蒸养 水化产物 强度 
分类号:
出版年,卷(期):页码:2019,47(7):0-0
DOI:
摘要:

 研究了掺20%镍渣粉的水泥胶砂在80 ℃蒸养7 h、7 d和标准养护28 d条件下的水化产物与力学性能。结果表明:镍渣中MgO主要存在晶体相(镁橄榄石与顽辉石)与玻璃体相两种形态。掺镍渣改变了蒸养7 d和标养28 d水泥水化产物的形貌和组成:蒸养7 d条件下,纯水泥胶砂的水化产物主要为纤维状C-S-H、片状CH和石榴粒状水化石榴石,而镍渣水泥胶砂,除以上水化产物外还有水滑石生成,说明蒸养促进了镍渣中MgO的反应;标准养护28 d纯水泥胶砂的C-S-H主要为网状,而镍渣水泥胶砂中的C-S-H主要有纤维状和球形等大粒子状2种形貌。蒸养7 h条件下镍渣水泥胶砂与纯水泥胶砂的化学结合水量基本相同,而蒸养7 d条件下水泥胶砂的化学结合水量高于标养28 d。蒸汽养护提高了镍渣的火山灰活性,从而显著提高了胶砂的强度活性指数。

 20% of ferronickel slag (FNS) were used to replace Portland cement (PC) to prepare mortars. The hydration products and mechanical properties of steam cured mortars (80 ℃ for 7 h and 7 d) were compared with standard cured mortars (28 d). The results show that MgO in FNS exists in both mineral crystalline phase (i.e., forsterite and enstatite) and amorphous phases. The addition of FNS in cement changes the morphology and composition of hydration products. The hydration products of plain cement mortar under steam curing for 7 d are mainly fibrous C-S-H gels, flake CH and granular hydrogarnet. For FNS mortars, in addition to the above hydration products, hydrotalcite is also generated, indicating that steam curing promotes the reaction of MgO in FNS. After standard cured for 28 d, the morphology of C-S-H gels in plain cement mortars is mainly reticular, while that in FNS mortars is mainly fibrous and equant grains. Furthermore, the non-evaporable water of FNS mortar and plain cement mortar is basically the same under steam curing for 7 h, while the non-evaporable water of steam cured 7 d mortars is higher than that of standard cured 28 d mortars. Steam curing promotes the pozzolanic activity of FNS, leading to the significantly improved strength activity index of mortars.

基金项目:
国家自然科学基金(51778132);国家973项目(2015CB655100),中日政府间科技合作项目(2016YFE0118200);江苏省研究生科研与实践创新计划项目(KYCX17_0068)。
作者简介:
参考文献:

 [1] HUANG Y, WANG Q, SHI M. Characteristics and reactivity of ferronickel slag powder[J]. Constr Build Mater, 2017, 156: 773?789.

[2] 孔令军, 赵祥麟, 刘广龙. 红土镍矿冶炼镍铁废渣综合利用研究综述[J]. 铜业工程, 2014(4): 42?44. 
KONG Lingjun, ZHAO Xianglin, LIU Guanglong. Copper Eng (in Chinese), 2014(4): 42?44.
[3] 盛广宏, 翟建平. 镍工业冶金渣的资源化[J]. 金属矿山, 2005(10): 68?71.
SHENG Guanghong, ZHAI Jianping. Met Miner (in Chinese), 2005(10): 68?71. 
[4] MITRAŠINOVI? A M, WOLF A. Separation and recovery of valuable metals from nickel slags disposed in landfills[J]. Sep Sci Technol, 2015, 50: 2553–2558.
[5] 王佳佳, 刘广宇, 倪文, 等. 激发剂对金川水淬二次镍渣胶结料强度的影响[J]. 金属矿山, 2013(4): 159?163. 
WANG Jiajia, LIU Guangyu, NI Wen, et al. Met Miner(in Chinese), 2013(4): 159?163. 
[6] WANG Z, NI W, JIA Y, et al. Crystallization behavior of glass ceramics prepared from the mixture of nickel slag, blast furnace slag and quartz sand[J]. J Non-Cryst Solids, 2010, 356: 1554–1558.
[7] YANG T, YAO X, ZHANG Z. Geopolymer prepared with high-magnesium nickel slag: Characterization of properties and microstructure[J]. Constr Build Mater, 2014, 59: 188–194.
[8] KATSIOTIS N S, TSAKIRIDIS P E, VELISSARIOU D, et al. Utilization of ferronickel slag as additive in portland cement: A Hydration leaching study[J]. Waste Biomass Valorization, 2015, 6: 177–189.
[9] CHOI Y C, CHOI S. Alkali–silica reactivity of cementitious materials using ferro-nickel slag fine aggregates produced in different cooling conditions[J]. Constr Build Mater, 2015, 99: 279?287.
[10] MO Liwu, DENG Min, TANG Mingshu. Potential approach to evaluating soundness of concrete containing MgO-based expansive agent[J]. ACI Mater J, 2010, 107(2): 99?105.
[11] KAYALI O, KHAN M S H, AHMED M S. The role of hydrotalcite in chloride binding and corrosion protection in concretes with ground granulated blast furnace slag[J]. Cem Concr Compos, 2012, 34(8): 936?945.
[12] RAHMAN M A, SARKER P K, SHAIKH F U A, et al. Soundness and compressive strength of Portland cement blended with ground granulated ferronickel slag[J]. Constr Build Mater, 2017, 140: 194?202.
[13] RÍOS C A, WILLIAMS C D, FULLEN M A. Hydrothermal synthesis of hydrogarnet and tobermorite at 175 ℃ from kaolinite and metakaolinite in the CaO–Al2O3–SiO2–H2O system: A comparative study[J]. Appl Clay Sci, 2009, 43(2): 228?237. 
[14] KELKAR C P, SCHUTZ A A. Ni-, Mg- and Co-containing hydrotalcite-like materials with a sheet-like morphology: synthesis and characterization[J]. Microporous Mater, 1997, 10(4/6): 163?172.
[15] CHEN Q Y, TYRER M, HILLS C D, et al. Immobilisation of heavy metal in cement-based solidification/stabilisation: A review[J]. Waste Manage, 2009, 29(1): 390?403.
[16] HEIKAL M, RADWAN M M, MORSY M S. Influence of curing temperature on the physico-mechanical, characteristics of calcium aluminate cement with air cooled slag or water cooled slag[J]. Ceram-Silik, 2004, 48(4): 185?196.
[17] WANG D, SHI C, WU Z, et al. A review on ultra high performance concrete: Part II. Hydration, microstructure and properties[J]. Constr Build Mater, 2015, 96: 368?377.
[18] YANG Z, FISCHER H, POLDER R. Modified hydrotalcites as a new emerging class of smart additive of reinforced concrete for anticorrosion applications: A literature review[J]. Mater Corros, 2013, 64(12): 1066?1074.
[19] DIAMOND S, LACHOWSKI E E. On the morphology of type III CSH gel[J]. Cem Concr Res, 1980, 10(5): 703?705.
[20] LI B, HUO B, CAO R, et al., Sulfate resistance of steam cured ferronickel slag blended cement mortar[J]. Cem Concr Compos, 2019, 96: 204?211.
[21] DURDZI?SKI P T. Hydration of multi-component cements containing cement clinker, slag, calcareous fly ash and limestone[R]. EPFL, 2016.
[22] 李响, 阎培渝. 高温养护对复合胶凝材料水化程度及微观形貌的影响[J]. 中南大学学报: 自然科学版, 2010, 41(6): 2321?2326.
LI Xiang, YAN Peiyu. J Cent South Univ: Sci Technol (in Chinese), 2010, 41(6): 2321?2326.
[23] 章春梅, RAMACHANDRAN V S. 碳酸钙微集料对硅酸三钙水化的影响[J]. 硅酸盐学报, 1988, 16(2): 110?117.
ZHANG Chunmei, RAMACHANDRAN V S. J Chin Ceram Soc, 1988, 16(2): 110?117.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com