[1] ROGHAYEH K M, FAKHRY S A. A study on the thermal behavior of low silica X-type zeolite ion-exchanged with alkaline earth cations[J]. Micropor Mesopor Mater, 2009, 120(3): 285−293.
[2] HANIM S A M, MALEK N A N N, IBRAHIM Z. Amine-functionalized, silver-exchanged zeolite NaY: Preparation, characterization and antibacterial activity[J]. Appl Surf Sci, 2016, 360(2): 121−130.
[3] CHOI E Y, KIM S Y, YANG K, et al. Crystal structure of an ethylene sorption complex of fully dehydrated, fully oxidized, fully Ag+-exchanged zeolite X[J]. Micropor Mesopor Mater, 2003, 62(3): 201−210.
[4] 侯静雯, 韩璐, 向豪, 等. 碱处理载银NaA分子筛的制备及抗菌性能研究[J]. 化学研究与应用, 2011, 23(3): 261-267.
HOU Jingwen, HAN Lu, XIANG Hao, et al. Chem Res Appl (in Chinese), 2011, 23(3): 261−267.
[5] 高向华, 许并社, 魏丽乔, 等. 银型沸石抗菌剂的制备与性能研究[J]. 太原理工大学学报, 2008, 39(5): 455−458.
GAO Xianghua, XU BingShe, WEI Liqiao, et al. J Taiyuan Univ Technol (in Chinese), 2008, 39(5): 455−458.
[6] HODOSHIMA S, MOTOMIYA A, WAKAMATSU S, et al. Catalytic cracking of light-naphtha over MFI-zeolite/metal-oxide composites for efficient propylene production[J]. Res Chem Inter, 2015, 41(12): 9615−9626.
[7] OGINO I, EILERTSEN E A, HWANG S J, et al. Heteroatom-tolerant delamination of layered zeolite precursor materials[J]. Chem Mater, 2013, 25(9): 1502−1509.
[8] OUYANG X Y, HWANG S J, XIE D, et al. Heteroatom-substituted delaminated zeolites as solid lewis-acid catalysts[J]. ACS Catal, 2015, 5(5): 3108−3119.
[9] 王雅蓉. 杂原子取代磷酸铝分子筛的合成及表征[D]. 长春: 吉林大学, 2013.
WANG Yarong. Synthesis and characterization of heteroatom- substituted alumino-phosphates molecular sieves (in Chinese, dissertation). Changchun: Jilin University, 2013.
[10] ZHANG L, YANG C, MENG X, et al. Organotemplate-free syntheses of ZSM-34 zeolite and its heteroatom-substituted analogues with good catalytic performance[J]. Chem Mater, 2010, 22(10): 3099−3107.
[11] 吕新春, 赵荣, 吴泰琉, 等. 一种含锌MFI分子筛的合成与表征[J]. 高等学校化学学报, 2011, 32(3): 494−496.
LV Xinchun, ZHAO Rong, WU Tailiu, et al. Chem J Chin Univ (in Chinese), 2011, 32(3): 494−496.
[12] WANG L, SANG S, MENG S, et al. Direct synthesis of Zn-ZSM-5 with novel morphology[J]. Mater Lett, 2007, 61(8): 1675−1678.
[13] HUNSICKER R A, KLIER K, GAFFNEY T S, et al. Framework Zinc-substituted zeolites: synthesis, and core-level and valence-band XPS[J]. Chem Mater, 2002, 14(11): 4807−4811.
[14] 游效曾. 结构分析导论[M]. 北京: 科学出版社, 1982, 221−289.
YOU Xiaozeng. Introduction to Structural Analysis (in Chinese). Beijing: Science Press, 1982, 221−289.
[15] 齐晓勇. 水热法合成小粒径A型分子筛及其在抗菌材料中的应用[D]. 淄博: 山东理工大学, 2015.
QI Xiaoyong. Synthesis of small particle size A molecular sieve by hydrothermal method and its application in antibacterial materials (in Chinese, dissertation). Zibo: Shandong University of Science and Technology, 2015.
[16] TAKAI K, OHTSUKA T, SENDA Y, et al. Antibacterial properties of antimicrobial-finished textile products[J]. Microbiol Immunol, 2002, 46(2): 75.
[17] MARAMBIOJONES C, HOEK E M V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment[J]. J Nano Res, 2010, 12(5): 1531−1551.
[18] 王前, 李森, 徐会君, 等. 单模聚焦微波辐射合成小粒径NaA分子筛及其抗菌性能[J]. 硅酸盐学报, 2016, 44(10): 1451−1457.
WANG Qian, LI Sen, XU Huijun, et al. J Chin Ceram Soc, 2016, 44(10): 1451−1457.
[19] ABOUL-GHEIT A K, Awadallah A E, Aboul-Enein A A, et al. Molybdenum substitution by copper or zinc in H-ZSM-5 zeolite for catalyzing the direct conversion of natural gas to petrochemicals under non-oxidative conditions[J]. Fuel, 2011, 90(10): 3040−3046.
[20] LIU Q, TAN X, SHAO X. Preparation of Na-zeolite with Kaolinite for Wastewater Treatment[J]. J Chin Ceram Soc, 2015, 2(1): 30−37.
[21] 高迎新, 张昱, 杨敏, 等. Fe3+或Fe2+均相催化H2O2生成羟基自由基的规律[J]. 环境科学, 2006, 27(2): 115−119.
GAO Yingxin, ZHANG Yu, YANG Min, et al. Environ Sci (in Chinese), 2006, 27(2): 305−309.
[22] HE W, ZHOU Y T, WAMER W G, et al. Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles[J]. Biomaterials, 2012, 33(30): 7547−7555.
[23] INOUE Y, HOSHINO M, TAKAHASHI H, et al. Bactericidal activity of Ag-zeolite mediated by reactive oxygen species under aerated conditions[J]. J Inorg Biochem, 2002, 92(1): 37−42.
[24] THIYAGARAJAN S, SINGH S, BAHADUR D. Reusable sunlight activated photocatalyst Ag3PO4, and its significant antibacterial activity[J]. Mater Chem Phys, 2016, 173: 385−394.
[25] AURORE V, CALADANA F, BLANCHARD M, et al. Silver-Nanoparticles increase bactericidal activity and radical oxygen responses against bacterial pathogens in human osteoclasts[J]. Nanomedicine, 2017, 14(2): 601−607.
|