首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
6H-SiC单晶片划痕形貌与残余应力研究
作者:张银霞 王健康     
单位:(郑州大学 抗疲劳制造技术河南省工程实验室 郑州 450001) 
关键词:碳化硅单晶 划痕 Raman光谱 残余应力 
分类号:TN305.1
出版年,卷(期):页码:2019,47(7):0-0
DOI:
摘要:

 为了研究6H-SiC单晶片在(0001)晶面C面划擦过程中材料的损伤机理,首先通过微纳米划痕系统划擦单晶片,得到不同载荷作用下沿不同晶向的划痕,再通过摩擦力传感器、显微镜以及激光Raman光谱检测不同晶向划痕的摩擦系数、表面形貌以及残余应力。结果表明:6H-SiC单晶片沿不同晶向划擦后的摩擦系数基本稳定在0.185~0.240;单晶片在不同载荷作用下的划擦过程中沿 晶向出现了不同程度的损伤,随着载荷的增加单晶片从塑性去除逐渐转变为脆性去除,划痕中心的凹陷与两侧堆积现象逐渐加剧;当划痕加载力小于10.7 N时,材料处于塑性去除模式,残余应力主要呈现残余压应力,局部有较小的残余拉应力;当划痕加载力大于10.7 N时,材料从塑性去除向脆性去除转变,在14.8 N时转变为脆性去除模式,划痕底部残余拉应力逐渐增大,以残余拉应力为主,但在划痕两侧堆积处呈现较大残余压应力。该研究可为6H-SiC单晶片精密超精密研磨加工损伤机理的研究提供理论支持。

 In order to clarify the damage mechanism of 6H-SiC single crystal wafer in the scratching process of (0001) crystal surface, the SiC wafer was scratched by a micro-nanoscale scratch system. The scratches along different crystal directions under different loads were analyzed. The friction coefficient, surface morphology and residual stress of the scratches along different crystal directions were determined by a friction sensor, microscope and laser Raman spectroscope. The results show that the friction coefficient of SiC wafer is basically stable at 0.185–0.240 after scratching along different crystal directions. In the scratch process of SiC wafer under different loads, different damage degrees occur along  crystal direction. The material mode gradually changes from plastic removal mode to brittle removal mode, and the groove in the center and the accumulations on both sides of the scratch gradually intensify with the increase of load. The material is removed by plastic removal mode, and the residual stress mainly presents the residual compressive stress with a small residual tensile stress locally when the scratch load is less than 10.7 N. The material removal mode gradually changes from plastic removal to brittle removal, and then to brittle removal mode at 14.8 N when the scratch load is larger than 10.7 N. The residual tensile stress at the bottom of the scratch gradually increases, mainly residual tensile stress, but there is a large residual compressive stress at the accumulation on both sides of the scratch. This study could provide a theoretical support for the research of damage mechanism of SiC wafer precision ultra-precision machining.

基金项目:
国家自然科学基金重点项目(U1804254);河南省自然科学基金项目(162300410244);中国博士后科学基金项目(2015M580635);河南省高等学校重点科研项目(13B460361)。
作者简介:
参考文献:

 [1] 杨乐乐. SiC晶片研磨加工表面损伤层检测研究[D]. 郑州: 郑州大学, 2013. 

YANG Lele. Damage detection research on the surface layer of the lapped SiC wafer (in Chinese, dissertation). Zhengzhou: Zhengzhou University, 2013.
[2] JEEPS N W, PAGE T F. Polytypic transformations in silicon carbide[J]. Prog Crys Growth Charact Mater, 1983, 7(1): 259?307. 
[3] 潘继生. 单晶SiC基片超精密磨粒加工机理研究[D]. 广州: 广东工业大学, 2015.
PAN Jisheng. Research on ultra precision abrasive machining mechanism of monocrystalline SiC substrates(in Chinese, dissertation). Guangzhou: Guangdong University of Technology, 2015.
[4] 胡海明, 李叔娟, 高晓春, 等. SiC单晶片研磨过程材料去除率仿真与试验研究[J]. 兵工学报, 2013, 34(9): 1125?1131. 
HU Haiming, LI Shujuan, GAO Xiaochun, et al. Acta Armamentarii(in Chinese), 2013, 34(9): 1125?1131. 
[5] 雷振坤, 仇巍, 亢一澜, 等. 微尺度拉曼光谱实验力学[M]. 北京: 科学出版社, 2015: 6?11.
[6] 刘斌, 杨延清, 罗贤, 等. CVD-SiC纤维的拉曼光谱研究[J]. 光谱学与光谱分析, 2011, 31(11): 2956?2960.  
LIU Bin, YANG Yanqing, LUO Xian, et al. Spectrosc Spectral Anal(in Chinese), 2011, 31(11): 2956?2960.
[7] NAKASHIMA S I, MITANI T, TOMOBE M, et al. Raman characterization of damaged layers of 4H-SiC induced by scratching[J]. AIP Adv, 2016, 6(1): 15207?15215.
[8] 韩月涛, 李秋, 富东慧, 等. 纳米压痕残余应力场拉曼光谱实验研究[J]. 实验力学, 2015, 30(1): 1?8.  
HAN Yuetao, LI Qiu, FU Donghui, et al. J Exp Mech(in Chinese), 2015, 30(1): 1?8.
[9] PUECH P, DEMANGEOT F, PIZANI P S. Strain determination around Vickers indentation on silicon surface by Raman spectroscopy[J]. J Mater Res, 2004, 19(4): 1273?1280.
[10] MENG B B, YONG Z, ZhANG F. Material removal mechanism of 6H-SiC studied by nano-scratching with Berkovich indenter[J]. Appl Phys A, 2016, 122(3): 247?256.
[11] LEI Z K, KANG Y L, CEN H, et al. Residual stress on surface and cross-section of porous silicon studied by micro-Raman spectroscopy[J]. Chin Phys Lett, 2005, 22 (4): 984?986
[12] 邓卫林, 仇巍, 焦永哲,等. 硅基底多层薄膜结构材料残余应力的微拉曼测试与分析[J]. 实验力学, 2012, 27(1): 1?9.
DENG Weilin, QIU Wei, JIAO Yongzhe, et al. J Exp Mech(in Chinese), 2012, 27(1): 1?9 .
[13] MUHAMMAD A, ZHANG X Q, MUSTAFIZUR Rahman, et al. A predictive model of the critical undeformed chip thickness for ductile-brittle transition in nano-machining of brittle materials[J]. Int J Mach Tools Manuf, 2013, 64(2): 114?122.
[14] 丁子成, 李淑娟, 李梓, 等. SiC单晶刻划过程的脆塑性转变特征研究[J]. 人工晶体学报, 2016, 45(11): 2614?2625. 
DING Zicheng, LI Shujuan, LI Zi, et al. J Synth Cryst(in Chinese), 2016, 45(11): 2614?2625. 
[15] CERDEIRA F, BUCHENAUER C J, POLLAK F H, et al. Stress-induced shifts of first-order Raman frequencies of diamond- and zinc-blende-type semiconductors[J] Phys Rev B, 1972, 5(5): 580?593.
[16] GHOSH D, SUBHASH G, ORLOVSKAYA N. Measurement of scratch-induced residual stress within SiC grains in ZrB–SiC composite using micro-Raman spectroscopy[J]. Acta Mater, 2008, 56(18): 5345?5354.
[17] MICHAEL E, SERGET L, MICHAEL S. 先进半导体材料性能与数据手册[M]. 北京: 化学工业出版社, 2003: 198?199.
MICHAEL E, SERGET L, MICHAEL S. Advanced Semiconductor Material Performance and Data Manual[M]. Beijing: Chemical Industry Press, 2003: 198?199.
[18] TRAMPERT A, WAGNER T, THAMM A. Mechanical properties of GaN epilayers on 6H-SiC(0001) studied by nano indentation[R]. Stuttgart: Max-Planck-Institut fur Metallforschung, 2000: 14?15.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com