首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
核壳结构NaYF4基上转换材料的制备与性能
作者: 华1  霞1 2 乔新洁1 
单位:(1.青岛科技大学材料科学与工程学院 山东 青岛 266042 2. 广东四通集团股份有限公司 广东 潮州 521011) 
关键词:氟化钇钠 溶剂热法 上转换 核壳结构 发光强度 
分类号:O 613.72
出版年,卷(期):页码:2019,47(7):0-0
DOI:
摘要:

 采用溶剂热法成功的制备出了不同核壳结构NaYF4基上转换发光材料。利用X射线衍射、透射电子显微镜和荧光光谱等对产物进行表征,探讨反应时间对核壳结构纳米粒子发光强度的影响。结果表明:α-NaYF4@β-NaLuF4:Yb,Er纳米粒子的发光强度随反应时间的增加越来越强,反应时间为24 h时,成功制备出尺寸约为50 nm的核壳纳米粒子,并且随着反应时间延长六方相晶体的衍射峰强度逐渐增高,发光强度逐渐增强。活性壳α-NaYF4:Yb, Er@β-NaLuF4:Yb纳米粒子的发光强度比惰性壳α-NaYF4:Yb,Er@β-NaLuF4纳米粒子的发光强度高,这得益于活性壳层包含敏化剂Yb3+,敏化剂可以吸收激发能量,并将能量传递给核内的激活剂,从而提高材料的发光强度。

 

 NaYF4-based up-conversion material with a core-shell structure was prepared by a solvothermal method. The product was characterized by X-ray diffraction, transmission electron microscopy and fluorescence spectroscopy. The effect of reaction time on the luminescence intensity of core-shell nanoparticles was investigated. The results show that the luminous intensity of α-NaYF4@β-NaLuF4:Yb, Er nanoparticles increases with the increase of reaction time. The core-shell nanoparticles with the size of 50 nm were prepared at the reaction time of 24 h. The intensity of the diffraction peaks of the hexagonal phase crystals increases and the emission intensity increases with increasing the reaction time. Compared to the inert shell α-NaYF4:Yb, Er@β-NaLuF4 nanoparticles, the active shell α-NaYF4:Yb,Er@β-NaLuF4:Yb nanoparticles have a higher luminous intensity due to the active shell containing the sensitizer Yb3+. The sensitizers can absorb excitation energy and transfer energy to nucleus activators, thereby increasing the luminescence intensity.

基金项目:
国家自然科学基金项目(51372127,51072086);广东省扬帆计划项目(2015YT02C089)资助
作者简介:
参考文献:

 [1] WANG L, LI X, LI Z, et al. A New Cubic Phase for a NaYF4 host matrix offering high upconversion luminescence efficiency[J]. Adv Mater, 2015, 27(37): 5528–5533.

[2] El-TONY A M, HABILA M A, LABIS J P, et al. Design, synthesis and applications of core-shell, hollow core, and nanorattle multifunctional nanostructures[J]. Nanoscale, 2016, 8(5): 2510–2531.
[3] CHEN H, LANG F, ZHANG Y, et al. Dual mode emission of core-shell rare earth nanoparticles for fluorescence encoding[J]. J Mater Chem C, 2015, 3 (24): 6314–6321.
[4] CHEN G, OHULCHANSKYY T Y, KACHYNSKI A, et al. Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF4:Er3+ nanocrystals under excitation at 1490 nm[J]. ACS Nano, 2011, 5(6): 4981–4986.
[5] ZHOU B, TAO L, TSANG YH, JIN W. Core-shell nanoarchitecture: a strategy to significantly enhance white-light upconversion of lanthanide-doped nanoparticles[J]. J Mater Chem C, 2013, 1: 4313–4318.
[6] CHAN E M, LEVY E S, COHEN B E. Rationally designed energy transfer in upconverting nanoparticles[J]. Adv Mater, 2015, 27(38): 5753–5761.
[7] XIE X, LI Z, ZHANG Y, et al. Emerging ~800 nm excited lanthanide-doped upconversion nanoparticles[J]. Small, 2017, 13(6): 1–15.
[8] CHAN M H, PAN Y T, LEE I J, et al. Minimizing the heat effect of photodynamic therapy based on inorganic nanocomposites mediated by 808 nm near-infrared light[J]. Small, 2017, 13(21): 1-12.
[9] HU Y, WU B, JIN Q, et al. Facile synthesis of 5 nm NaYF4:Yb/Er nanoparticles for targeted upconversion imaging of cancer cells[J]. Talanta, 2016, 152: 504–512.
[10] 王敏. 异质离子掺杂对NaYF4:Yb3+,Er3+上转换发光材料光学性能的研究[D]. 上海: 东华理工大学, 2016.
WANG Min. Study on optical properties of NaYF4:Yb3+,Er3+ upconversion luminescent materials with heterogeneous ion doping(in Chinese, dissertation). Shanghai: East China Institute of Technology, 2016.
[11] 崔越. 稀土掺杂上转换发光纳米材料NaREF4制备、优化及应用的研究[D]. 北京: 北京交通大学, 2016.
CUI Yue. Study on the preparation, optimization and application of rare earth doped up-conversion luminescent nanomaterials NaREF4 (in Chinese dissertation). Beijing: Beijing Jiaotong University, 2016.
[12] VETRONE F, NACCACHE R, MAHALINGAM V, et al. The core/active-shell approach: the active-strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles[J]. Adv Funct Mater, 2009, 19(18): 2924–2929.
[13] 崔天蜂. 稀土氟化物及其核壳结构的制备与发光性能研究[D]. 杭州: 浙江大学材料与化学工程学院, 2008.
CUI Tianfeng. Study on preparation and luminescence properties of rare earth fluoride and its nuclear shell structure(in Chinese, dissertation). Hangzhou: College of Materials and Chemical Engineering, Zhejiang University, 2008.
[14] 陈欢. 异质核诱导法制备稀土上转换纳米晶的研究[D]. 长春: 吉林大学, 2015.
CHEN Huan. Study on the preparation of rare-earth upconversion nanocrystals by hetero nuclear induction(in Chinese, dissertation). Changchun: Jilin University, 2015.
[15] 李丽平, 高玮, 陈雪梅, 等. NaYF4:Yb,Er材料的制备及其上转换发光性能[J]. 稀土, 2012, 33(2): 35–39.
LI Liping, GAO Wei, CHEN Xuemei, et al. Chin Rare Earths(in Chinese), 2012, 33(2): 35–39.
[16] 韩星星. 上转换α-NaYF4:Yb,Er纳米材料及其二氧化硅异质包覆的合成与表征[D]. 长春: 吉林大学, 2009.
HAN Xingxing. Synthesis and characterization of up conversion α-NaYF4:Yb, Er nanomaterials and their silica hetero coating(in Chinese, dissatation). Changchun: Jilin University, 2009.
[17] 姚秀伟, 王国凤, 李莹, 等.NaLuF4:Yb3+,Er3+微米晶的制备及上转换发光[J]. 发光学报, 2013, 34(10): 1319–1323.
YAO Xiuwei, WANG Guofeng, LI Ying, et al. Chin J Lumin(in Chinese), 2013, 34(10): 1319–1323.
[18] 彭叶青, 李志豪, 刘子恩, 等. 核-壳型稀土上转换纳米材料的生物医学应用[J]. 中国科学: 化学, 2015, 45(11): 1159–1177.
PENG Yeqing, LI Zhihao, LIU Zien, et al. Sci China: Chem (in Chinese), 2015, 45(11): 1159–1177.
[19] YI G S, CHOW G M. Water-soluble NaYF4:Yb,Er(Tm)/NaYF4/ polymer core/shell nanoparticles with significant enhancement of upconversion fluorescence[J]. Chem Mater, 2007, 19(3): 341–353.
[20] JU D, SONG F, HAN Y, et al. Sequential growth of uniform β-NaYF4@β-NaLnF4(Ln=Y, Lu, Yb) microcrystals with luminescent properties of multicolor tuning and dual-mode emission[J]. Nanomaterials, 2017, 7(12): 448–460.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com