首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
计算机模拟在不同类型离子电池电极材料中的研究进展
作者:吴苗苗 刘佳昊 王珂欣 魏雪虎 李洺阳   马向东 刘瑞平 
单位:(中国矿业大学(北京)材料科学与工程系 北京 100083) 
关键词:计算模拟 锂离子电池 锂硫电池 钠离子电池 
分类号:TM911
出版年,卷(期):页码:2019,47(7):0-0
DOI:
摘要:

 高能量密度储能装置的锂硫电池和钠离子电池等新型电池体系正在迅速发展。简要概述了锂离子电池、锂硫电池和钠离子电池的正负极材料,着重就第一性原理、分子动力学、蒙特卡罗及有限元方法在电极材料中的研究进展,以及在材料的晶体结构、电子结构、离子的输运过程、材料中的温度和应力分布以及掺杂改性等方面的应用进行了综述,对计算模拟技术在电极材料中的应用前景进行了展望。这些理论研究成果将有助于加深对材料和电池性能之间关系的理解,并对新电池体系材料的设计和研发具有理论指导意义。

 Novel battery systems such as lithium-sulfur and sodium-ion batteries have attracted recent attention due to their high-energy density. This review introduced the anode and cathode materials used for lithium-ion batteries, lithium-sulfur batteries and sodium-ion batteries, and represented the applications of computer simulation techniques based on first-principles method, molecular dynamics method, Monte Carlo method and finite element method for electrode materials research (i.e., crystal and electronic structures, transport process of ions, temperature and stress distribution, and doping modification). The simulation results favor to clarify the relationship between materials and battery performance, and provide a theoretical guidance for the design and development of novel battery system materials.

基金项目:
国家重点研发计划(2017YFB0601904);国家自然科学基金项目(11404395);中央高校基本科研业务费专项资金(2013QJ01);国家大学生创新训练项目(C201704589)。
作者简介:
参考文献:

 [1] 江建军, 缪灵, 梁培, 等. 计算材料学—设计实践方法[M].北京: 高等教育出版社, 2010: 4?5.

[2] HAFNER J, WOLVERTON C, CEDER G. Toward computational materials design: The impact of density functional theory on materials research[J]. Mater Res Bull, 2006, 31(9): 659?667.
[3] 吴宇平, 万春荣, 姜长印. 锂离子二次电池[M]. 北京:化学工业出版社, 2002: 1?12.
[4] ANTOLINI E. LiCoO2: Formation, structure, lithium and oxygen nonstoichiometry, electrochemical behavior and transport properties[J]. Solid State Ionics, 2004, 170: 159?171.
[5] SUN Y K, MYUNG S T, PARK B C, et al. High-energy cathode material for long-life and safe lithium batteries[J]. Nat Mater, 2009, 8(4): 320?324.
[6] NOHMA T, KUROKAWA H. Electrochemical characteristics of LiNiO2 and LiCoO2 as a positive material for lithium secondary batteries[J]. J Power Sources, 1995, 54(2): 522?524.
[7] YAMADA S, FUJIWARA M, KANDA M. Synthesis and properties of LiNiO2 as cathode material for secondary battery[J]. J Power Sources, 1995, 54(2): 209?213.
[8] 吴宇平, 戴晓兵, 马军旗, 等. 锂离子电池—应用与实践[M]. 北京: 化学工业出版社, 2004: 7?12, 167?168.
[9] WINTER M, BRODD R J. What are batteries, fuel cells, and supercapacitors [J]. Chem Rev, 2004, 104: 4245?4269.
[10] PROSINI P P, ZANE D, PASQUALI M. Improved electrochemical performance of a LiFePO4-based composite cathode[J]. Electrochim Acta, 2001, 46(23): 3517?3523.
[11] 黄可龙, 王兆翔, 刘素琴. 锂离子电池原理与关键技术[M]. 北京: 化学工业出版社, 2008:362.
[12] BESENHARD J, YANG J, WINTER M. Will advanced lithium-alloy anodes have a chance in lithium-ion batteries?[J]. J Power Sources, 1997, 68(1): 87?90.
[13] JUNG G, JANG M, HASSOUN J, et al. A high-rate long-life Li4Ti5O12/Li[Ni0.45Co0.1Mn1.45] lithium-ion battery[J]. Nat Commun, 2011, 2: 516?50.
[14] PETER G B, STEPHEN A F, LAURENCE J H, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nat Mater, 2012, 11: 19?29.
[15] 朴颖. 锂离子电池正极材料LiVPO4F的结构与性质研究[D]. 长春: 吉林大学, 2014.
PIAO Ying. Research on structure and properties of LiVPO4F cathode materials for lithium-ion batteries (in Chinese, dissertation). Changchun: Jilin University, 2014.
[16] 宋刘斌. 锂离子电池的热电化学研究及其电极材料的计算与模拟[D]. 长沙: 中南大学,2013.
SONG Liubin. Thermal electrochemical study of lithium ion batteries and calculation and simulation of their electrode materials (in Chinese, dissertation). Changsha: Central South University, 2013.
[17] MOHAMMAD J M, MORTEZA M-K, EHSAN T. First-principles investigation of adsorption and diffusion of Li on doped silicenes: Prospective materials for lithium ion batteries[J]. Mater Chem Phys, 2017, 192: 125?130.
[18] 林志萍.锂离子电池正极材料及铁电材料的第一性原理研究[D]. 广州: 华南理工大学, 2011.
LIN Zhiping. First-principles study of cathode materials and ferroelectric materials for lithium-ion batteries (in Chinese, dissertation). Guangzhou: South China University of Technology, 2011.
[19] 段欢. 锂离子电池电极材料改性机理的第一性原理研究[D]. 北京: 清华大学, 2015.
DUAN Huan. First-principles study on the modification mechanism of lithium ion battery electrode materials (in Chinese, dissertation). Beijing: Tsinghua University, 2015.
[20] SCHARNER S, WEPPNER W, SCHMID-BEURMANN P.  Evidence of Two-phase formation upon lithium insertion into the Li1.33Ti1.67O4 spinel[J]. J Electrochem Soc, 1999, 146(3): 857?861.
[21] NIE Z X, OUYANG C Y, CHEN J Z, et al. First principles study of Jahn-Teller effects in LixMnPO4[J]. Solid State Commun, 2010, 150(15/16): 693?696.
[22] CHOU C Y, KIM Y, HWANG G S. First-principles study of structure, energetics, and properties of Li-M (M=Si,Sn,Ge) alloys [J]. J Phys Chem C, 2011, 115(40): 20018?20026.
[23] 汝强, 胡社军, 赵灵智. LixFePO4 (x=0.0, 0.75, 1.0)电子结构与弹性性质的第一性原理研究[J]. 物理学报, 2011, 60(3): 36301.
RU Qiang, HU Shejun, ZHAO Lingzhi. Acta Phys Sin (in Chinese), 2011, 60(3): 36301.
[24] LAURA U M, MANUEL O, GUILLERMINA L L, et al. First-principles studies of silicon under potential deposition on defective graphene and its relevance for lithium-ion battery materials[J]. Electrochim Acta, 2016, 208: 92?101.
[25] 龚鑫. 第一性原理计算研究锂离子电池正极材料LiCoO2的热力学性能[D]. 南昌: 江西师范大学, 2014.
GONG Xin. First-principles calculation study of the thermodynamic properties of LiCoO2 cathode material for lithium ion batteries (in Chinese, dissertation). Nanchang: Jiangxi Normal University, 2014.
[26] 杜桃园. 锂离子电池层状电极材料晶格动力学的第一性原理研究[D]. 南昌: 江西师范大学, 2015.
DU Taoyuan. First-principles study of lattice dynamics of layered electrode materials for Li-ion battery (in Chinese, dissertation). Nanchang: Jiangxi Normal University, 2015.
[27] HOANG K, JOHANNES M D. First-principle studies of the effects of impurities on the ionic and electronic conduction in LiFePO4[J]. J Power Sources, 2012, 206: 74?281.
[28] Peng B, Cheng F Y, Tao Z L, et al. Lithium transport at silicon thin film: Barrier for high-rate capability anode[J]. J Chem Phys, 2010, 133: 034701.
[29] 罗改霞. 锂离子电池与超级电容器电极材料的理论研究[D]. 大连: 大连理工大学, 2013.
LUO Gaixia. Theoretical study on electrode materials for lithium ion batteries and supercapacitor (in Chinese, dissertation). Dalian: Dalian University of Technology, 2013.
[30] YANG J J, TSE J S. Li ion diffusion mechanisms in LiFePO4: An ab initio molecular metallic liquid hydrogen[J]. Nat Commun, 2013, 4: 1?5.
[31] 姬祥, 宋亦诚, 张俊倩. 锂离子电池LixC6扩散性质的分子动力学模拟[J]. 上海大学学报, 2014, 20(1): 68?74.
JI Xiang, SONG Yicheng, ZHANG Junqian. J Shanghai Univ(in Chinese), 2014, 20(1): 68?74.
[32] OUYANG C Y, SHI S Q, WANG Z X, et al. The effect of Cr doping on Li ion diffusion in LiFePO4 from first principles investigations and Monte Carlo simulations[J]. J Phys: Condens Matter, 2004, 16(13): 2265?2272.
[33] METHEKAR R N, NORTHROP P W C, CHEN K, et al. Kinetic Monte Carlo simulation of surface heterogeneity in graphite anodes for lithium-ion batteries: Passive layer formation[J]. J Electrochem Soc, 2011, 158(4): A363?A370.
[34] AURBACH D, POLLAK E, ELAZARI R. On the surface chemical aspects of very high energy density, rechargeable Li-Sulfur batteries [J]. J Electrochem Soc, 2009, 156(8): A694?A702.
[35] 罗改霞, 文黎巍. Ni掺杂锂硫电池正极材料Li2S性能研究[J]. 湖南城市学院学报, 2015, 24(4): 98?99.
LUO Gaixia, WEN Liwei. J Hunan City Univ(in Chinese), 2015, 24(4): 98?99.
[36] 郭锦, 张敏刚, 郝豫宝, 等. 硫/聚吡咯复合正极材料的第一性原理计算[J]. 机械工程与自动化, 2017, 1: 149?150.
GUO Jin, ZHANG Mingang, HAO Yubao, et al. Mech Eng Autom(in Chinese), 2017, 1: 149?150.
[37] 宁可. 硫正极材料掺杂改性的第一性原理研究[D]. 长春: 吉林大学, 2012.
NING Ke. First-principles study on doping modification of sulfur cathode materials (in Chinese, dissertation). Changchun: Jilin University, 2012.
[38] 钱江峰. 先进储钠电极材料及其电化学储能应用[D]. 武汉: 武汉大学, 2012.
QIAN Jiangfeng. Advanced Na-storage materials and their electrochemical energy storage application (in Chinese, dissertation). Wuhan: Wuhan University, 2012.
[39] 何菡娜, 王海燕, 唐有根, 等. 钠离子电池负极材料[J]. 化学进展, 2014, 26(4): 572?581.
HE Hanna, WANG Haiyan, TANG Yougen, et al. Progress in Chemistry, 2014, 26(4): 572 -581.
[40] 粟劲苍. 钠离子电池层状正极材料与类石墨烯MoS2负极材料的第一性原理研究[D]. 湘潭: 湘潭大学, 2015.
SU Jincang. First-principles study of sodium ion battery layered cathode materials and graphene-like MoS2 anode materials(in Chinese, dissertation). Xiangtan: Xiangtan University, 2015.
[41] MORTAZAVI M. YE Q J, BIRBILIS N, et al. High capacity group-15 alloy anodes for Na-ion batteries: electrochemical and mechanical insights[J]. J Power Sources, 2015, 285: 29?36.
[42] KULISH V V, MALYI O I, PERSSON C, et al. Adsorption of metal adatoms on single-layer phosphorene[J]. Phys Chem Chem Phys, 2015, 17(2): 992?1000.
[43] KULISH V V, MALYI O I, PERSSON C, et al. Phosphorene as an anode material for Na-ion batteries: a first-principles study[J]. Phys Chem Chem Phys, 2015, 17(21): 13921?13928.
[44] ER D, LI J, NAGUIB M, et al. Ti3C2 mxene as a high capacity electrode material for metal (Li,Na,K,Ca) ion batteries[J]. ACS Appl Mater interfaces, 2014, 6: 11173?11179.
[45] LING C, MIZUNO F. Boron-doped graphene as a promising anode for Na-ion batteries[J]. Phys Chem Chem Phys, 2014, 16(22): 10419?10424.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com