首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
磷酸银光催化剂制备与催化性能研究进展
作者:邓军阳 聂龙辉   朱思龙   谭军军   
单位:(湖北工业大学材料与化学工程学院 武汉 430068) 
关键词:磷酸银 制备方法 光催化性能 
分类号:TN304.91; TB34
出版年,卷(期):页码:2019,47(7):0-0
DOI:
摘要:

 磷酸银(Ag3PO4)是一种新型高效可见光光催化剂,已被用于污染物降解、产氢、产氧和抗菌等领域。Ag3PO4克服了TiO2可见光活性低的缺点,但同时存在光腐蚀问题。为进一步提高其光催化活性与稳定性,对其进行表面修饰改性,最常用方法是与其他光催化剂复合形成Z型光催化剂。本综述总结了不同制备方法(离子交换法、溶剂热法、沉淀法、浸渍法等)对Ag3PO4及其复合物结构、形貌及性能的影响。其中沉淀法简便易行、设备要求低,研究最多。展望了Ag3PO4光催化剂未来发展方向。

  Silver phosphate (Ag3PO4) is a high-efficient visible-light photocatalyst, which is widely applied in the fields of organic pollutant degradation, hydrogen production, oxygen production and antibacterial, etc.. Although Ag3PO4 can overcome the shortcomings of low visible-light activity of TiO2, its poor light stability restricts its applications. To further improve its catalytic activity and stability, recent work on the surface modification have been performed. The strategy is to form Z-type photocatalyst with other catalysts. This review summarized the effect of preparation methods (i.e., ion exchange, solvothermal, precipitation, impregnation, etc.) on the structure, morphology, and properties of silver phosphate and its complexes. Among them, precipitation is the most widely investigated method to fabricate silver phosphate and its complexes due to its simple process and low equipment requirement. In addition, the development of silver phosphate photocatalysts in the future was also prospected.

基金项目:
国家自然科学基金(51572074);湖北省绿色轻质材料重点实验室开放课题(201710A12)项目
作者简介:
参考文献:

 [1] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358 ): 37?38. 

[2] ZHU S Y, LIANG S J, WANG Y, et al. Ultrathin nanosheets of molecular sieve SAPO-5: A new photocatalyst for efficient photocatalytic reduction of CO2 with H2O to methane[J]. Appl Catal B-Environ, 2016, 187: 11?18.
[3] CHEN Y G, ZHAO S, WANG X, et al. Synergetic integration of Cu1.94S–ZnxCd1?xS heteronanorods for enhanced visible-light-driven photocatalytic hydrogen production[J]. J Am Chem Soc, 2016, 138(13): 4286?4289. 
[4] MOHMED S K, IBRAHIM A A, MOUSA A A, et al. Facile fabrication of ordered mesoporous Bi/Ti-MCM-41 nanocomposites for visible light-driven photocatalytic degradation of methylene blue and CO oxidation[J]. Sep Purif Technol, 2018, 195: 174?183. 
[5] VATTIKUTI S V P, REDDY P A K, JYOTHI P C N, et al. Hydrothermally synthesized Na2Ti3O7 nanotube-V2O5 heterostructures with improved visible photocatalytic degradation and hydrogen evolution-Its photocorrosion suppression[J]. J Alloy Compd, 2018, 740: 574?586.
[6] SUI Y L, LIU Q X, JIANG T, et al. Synthesis of nano-TiO2 photocatalysts with tunable Fe doping concentration from Ti-bearing tailings[J]. Appl Surf Sci, 2018, 428: 1149?1155. 
[7] TAN S Y, XING Z P, ZHANG J Q, et al. Ti3+-TiO2/g-C3N4 mesostructured nanosheets heterojunctions as efficient visible-light-driven photocatalysts[J]. J Catal, 2018, 357: 90?99. 
[8] HU Y, LI D Z, CHEN W, et al. BiVO4/TiO2 nanocrystalline heterostructure: A wide spectrum responsive photocatalyst towards the highly efficient decomposition of gaseous benzene[J]. Appl Catal B-Environ, 2011, 104(1/2): 30?36. 
[9] YANG Z, FAN H Q, WANG X, et al. Rapid microwave-assisted hydrothermal synthesis of Bi12TiO20 hierarchical architecture with enhanced visible-light photocatalytic activities[J]. J Phys Chem Solids, 2013, 74(12): 1739?1744. 
[10] WETCHAKUN N, CHAIWICHAIN S, INCEESUNGVORN B, et al. BiVO4/CeO2 nanocomposites with high visible-light-induced photocatalytic activity[J]. ACS Appl Mater Interfaces, 2012, 4(7): 3718?3723. 
[11] HU S P, XU C Y, WANG W S, et al. Synthesis of Bi2WO6 hierarchical structures constructed by porous nanoplates and their associated photocatalytic properties under visible light irradiation[J]. Ceram Int, 2014, 40(8): 11689?11698. 
[12] 方稳, 何洪波, 薛霜霜, 等. BiOClxI1?x复合半导体的热稳定性及光催化性能[J]. 硅酸盐学报, 2016, 44(5): 711?719.
FANG Wen, HE Hongbo, XUE Shangshuang, et al. J Chin Ceram Soc, 2016, 44(5): 711?719.
[13] CHENG Z P, CHU X Z, SHENG Z H, et al. Synthesis of quasi-spherical AgBr microcrystal via a simple ion-exchange route[J]. Mater Lett, 2016, 168: 99?102. 
[14] 蔡维维, 李蛟, 何静, 等. 磷酸银纳米结构的调控及其光催化性能研究[J]. 无机材料学, 2017, 32(3): 263?268.
CAI Weiwei, LI Jiao, HE Jing, et al. J Inorg Mater(in Chinese), 2017, 32(3): 263?268.
[15] WANG P F, TANG H, AO Y H, et al. In-situ growth of Ag3VO4 nanoparticles onto BiOCl nanosheet to form a heterojunction photocatalyst with enhanced performance under visible light irradiation[J]. J Alloy Compd, 2016, 688: 1?7.
[16] ZHU T T, SONG Y H, JI H Y, et al. Synthesis of g-C3N4/Ag3VO4 composites with enhanced photocatalytic activity under visible light irradiation[J]. Chem Eng J, 2015, 271: 96?105.
[17] 余家国, 许第发. 银系半导体光催化材料研究进展[J]. 硅酸盐学报, 2017, 45(9): 1240?1255.
YU Jiaguo, XU Difa. J Chin Ceram Soc, 2017, 45(9): 1240?1255.
[18] YOU Z Y, SU Y X, YU Y, et al. Preparation of g-C3N4 nanorod/InVO4 hollow sphere composite with enhanced visible-light photocatalytic activities[J]. Appl Catal B-Environ, 2017, 213: 127?135.
[19] DAI X, XIE M L, MENG S G, et al. Coupled systems for selective oxidation of aromatic alcohols to aldehydes and reduction of nitrobenzene into aniline using CdS/g-C3N4 photocatalyst under visible light irradiation[J]. Appl Catal B-Environ, 2014, 158: 382?390.
[20] WANG R R, LIANG H F, HONG J Q, et al. Hydrothermal synthesis of cobalt-doped ZnS for efficient photodegradation of methylene blue[J]. J Photochem Photobiol A, 2016, 325: 62?67.
[21] GE M, LI Z. Recent progress in Ag3PO4-based all-solid-state Z-scheme photocatalytic systems[J]. Chin J Catal, 2017, 38: 1794-1803.
[22] YI Z G, YE J H, KIKUGAWA N, et al. An orthophosphate semiconductor with photooxidation properties under visible-light irradiation[J]. Nat Mater, 2010, 9(7): 559?564.
[23] BI Y P, OUYANG S X, UMEZAWA N, et al. Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties[J]. J Am Chem Soc, 2011, 133(17): 6490?6492.
[24] 马金玲, 牛晓君, 王杰, 等. 菱形十二面体磷酸银的制备及其可见光催化性能研究[J]. 化工新型材料, 2017, 45(7): 104?106.
MA Jinling, NIU Xiaojun, WANG Jie, et al. New Chem Mater(in Chinese), 2017, 45(7): 104?106.
[25] DONG L H, WANG P, WANG S, et al. A simple way for Ag3PO4 tetrahedron and tetrapod microcrystals with high visible-light-
responsive activity[J]. Mater Lett, 2014, 134: 158?161.
[26] HSIEH M S, SU H J, HSIEH P L, et al. Synthesis of Ag3PO4 crystals with tunable shapes for facet-dependent optical property, photocatalytic activity and electrical conductivity examinations[J]. ACS Appl Mater Interfaces, 2017, 9(44): 39086?39093.
[27] AMORNPITOKSUK P, INTARASUWAN K, SUWANGBOON S, et al. Effect of phosphate salts (Na3PO4, Na2HPO4, and NaH2PO4) on Ag3PO4 morphology for photocatalytic dye degradation under visible light and toxicity of the degraded dye products[J]. Ind Eng Chem Res, 2013, 52(49): 17369?17375.
[28] 汤春妮, 樊君. 高效磷酸银可见光催化剂的制备及脱除 NOx的性能研究[J]. 当代化工, 2017, 46(2): 211?214.
TANG Chunni, FAN Jun. Contemp Chem Ind (in Chinese), 2017, 46(2): 211?214.
[29] 李容, 郑敏, 段为甲, 等. Ag3PO4形貌对抗菌及光催化性能的影响[J]. 印染助剂, 2017, 34(3): 37?40.
LI Rong, ZHENG Min, JIA Weiduan, et al. Textile Auxiliaries(in Chinese), 2017, 34(3): 37?40.
[30] RAJENDRAN R, PUDUKUDY M, SOHILA S, et al. Facile preparation of Ag3PO4 rhombic dodecahedron microcrystals with enhanced catalytic activities under visible light irradiation[J]. J Mater Sci-Mater EL, 2014, 25(11): 4755?4759. 
[31] 肖明, 黄在银, 汤焕丰, 等. Ag3PO4表面热力学性质及光催化原位过程热动力学的晶面效应[J]. 物理化学学报, 2017, 33(2): 399?406. 
XIAO Ming, HUANG Zaiyin, TANG Huanfeng, et al. Acta Phys-Chim Sin(in Chinese), 2017, 33(2): 399?406.
[32] 王如意, 徐会佳, 茹世杰, 等. 磷酸银光催化降解甲磺酸吉米沙星的研究[J]. 太原科技大学学报, 2017, 38(3): 243?248.
WANG Ruyi, XU Huijia, RU Shijie, et al. J Taiyuan Univ Sci Technol(in Chinese), 2017, 38(3): 243?248.
[33] 严学华, 高庆侠, 杨小飞, 等. 磷酸银基光催化材料研究进展[J]. 硅酸盐学报, 2013, 41(10): 1354?1365.
YAN Xuehua, GAO Qingxia, YANG Xiaofei, et al. J Chin Ceram Soc, 2013, 41(10): 1354?1365.
[34] LUO J, LUO Y T, LI Q Y, et al. Synthesis of doughnut-like carbonate-doped Ag3PO4 with enhanced visible light photocatalytic activity[J]. Colloid Surf A, 2017, 535: 89?95.
[35] GUO J H, SHI H X, HUANG X B, et al. AgCl/Ag3PO4: A stable Ag-based nanocomposite photocatalyst with enhanced photocatalytic activity for the degradation of parabens[J]. J Colloid Interface Sci, 2018, 515: 10?17.
[36] YAN J, WANG C, XU H, et al. AgI/Ag3PO4 heterojunction composites with enhanced photocatalytic activity under visible light irradiation[J]. Appl Surf Sci, 2013, 287: 178?186.
[37] TIAN J, YAN T J, QIAO Z, et al. Anion-exchange synthesis of Ag2S/Ag3PO4 core/shell composites with enhanced visible and NIR light photocatalytic performance and the photocatalytic mechanisms[J]. Appl Catal B-Environ, 2017, 209: 566?578.
[38] 王杰, 牛晓君, 陈伟仡. Ag3PO4/AgBr/CNTs复合光催化剂的合成及其可见光催化性能研究[J]. 化工新型材料, 2017, 45(2): 148?151.
WANG Jie, NIU Xiaojun, CHENG Weiyi. New Chem Mater(in Chinese), 2017, 45(2): 148?151.
[39] HONG X T, WU X H, ZHANG Q Y, et al. Hydroxyapatite supported Ag3PO4 nanoparticles with higher visible light photocatalytic activity[J]. Appl Surf Sci, 2012, 258(10): 4801?4805. 
[40] CHAI Y Y, DING J, WANG L, et al. Enormous enhancement in photocatalytic performance of Ag3PO4/HAp composite: A Z-scheme mechanism insight[J]. Appl Catal B-Environ, 2015, 179: 29?36.
[41] LIU Y, FANG L, LU H, et al. Highly efficient and stable Ag/Ag3PO4 plasmonic photocatalyst in visible light[J]. Catal Commun, 2012, 17(1): 200?204.
[42] GUO J J, ZHOU H, OUYANG S X, et al. An Ag3PO4/nitridized Sr2Nb2O7 composite photocatalyst with adjustable band structures for efficient elimination of gaseous organic pollutants under visible light irradiation[J]. Nanoscale, 2014, 6(13): 7303?7311.
[43] 宋哲, 贺益强. 水热合成温度对Ag3PO4形貌及光催化降解染料的影响[J]. 吉林大学学报: 理学版, 2018, 56(1): 167?172.
SONG Zhe, HE Yiqiang. J Jilin University: Sci Ed(in Chinese), 2018, 56(1): 167?172.
[44] LU J S, WANG Y J, LIU L, et al. Fabrication of a direct Z-scheme type WO3/Ag3PO4 composite photocatalyst with enhanced visible-light photocatalytic performances[J]. Appl Surf Sci, 2017, 393: 180?190.
[45] LI Z, DAI K, ZHANG J F, et al. Facile synthesis of novel octahedral Cu2O/Ag3PO4 composite with enhanced visible light photocatalysis[J]. Mater Lett, 2017, 206: 48?51.
[46] CUI X K, TIAN L, XIAN X Z, et al. Solar photocatalytic water oxidation over Ag3PO4/g-C3N4 composite materials mediated by metallic Ag and graphene[J]. Appl Surf Sci, 2018, 430: 108?115.
[47] HUANG S Q, XU Y G, ZHOU T, et al. Constructing magnetic catalysts with in-suit solid-liquid interfacial photo-Fenton-like reaction over Ag3PO4@NiFe2O4 composites[J]. Appl Catal B-Environ, 2018, 225: 40?50.
[48] WAN J, LIU E Z, FAN J, et al. In-situ synthesis of plasmonic Ag/Ag3PO4 tetrahedron with exposed {111} facets for high visible-light photocatalytic activity and stability[J]. Ceram Int, 2015, 41(5): 6933?6940.
[49] MADHULIKA S, MOHAPATRA P K, BAHADUR D. Improved photocatalytic degradation of organic dye using Ag3PO4/MoS2 nanocomposite[J]. Front Mater Sci, 2017, 11(4): 366?375.
[50] WAN J, DU X, LIU E Z, et al. Z-scheme visible-light-driven Ag3PO4 nanoparticle@MoS2 quantum dot/few-layered MoS2 nanosheet heterostructures with high efficiency and stability for photocatalytic selective oxidation[J]. J Catal, 2017, 345: 281?294.
[51] CUI Z, SUN Y G, ZHANG Z D, et al. Facile synthesis and photocatalytic activity of Ag3PO4 decorated MoS2 nanoflakes on carbon fiber cloth[J]. Mater Res Bull, 2018, 100: 345?352.
[52] 徐梦秋, 柴波, 闫俊涛, 等. Bi2MoO6/Ag3PO4复合光催化剂的制备及光催化性能[J]. 硅酸盐学报, 2018, 46(1): 93?100.
XU Mengqiu, CHAI Bo, YAN Juntao, et al. J Chin Ceram Soc, 2018, 46(1): 93?100.
[53] WANG Z L, LV J L, DAI K, et al. Large scale and facile synthesis of novel Z-scheme Bi2MoO6/Ag3PO4 composite for enhanced visible light photocatalyst[J]. Mater Lett, 2016, 169: 250?253.
[54] ZHANG M Y, LI L, LIU Y, et al. Silver-decorated orthophosphate@bismuth molybdate heterostructure: An efficient photocatalyst with two visible-light active components[J]. J Mol Catal A, 2015, 400: 154?161.
[55] 杨麒麟, 马凤延. Ag3PO4/Bi2WO6 复合材料的制备及可见光降解罗丹明B[J]. 化工时刊, 2017, 31(2): 1?3.
YANG Qilin, MA Fengyan. Chem Ind Times(in Chinese), 2017, 31(2): 1?3.
[56] 常海波, 杨磊飞, 耿世杰, 等. 具有可见光催化活性的Ag3PO4/NaNbO3复合材料的合成与表征[J]. 分子科学学报, 2017, 33(3): 238?242.
CHANG Haibo, YANG Leifei, GENG Shijie, et al. J Mol Sci (in Chinese), 2017, 33(3): 238?242.
[57] FA W J, WANG P, YUE B, et al. Ag3PO4/Ag2CO3 p–n heterojunction composites with enhanced photocatalytic activity under visible light[J]. Chin J Catal, 2015, 36(12): 2186?2193.
[58] KRISHNA C R, DO J Y, KANG M. Fabrication of CdS-Ag3PO4 heteronanostructures for improved visible photocatalytic hydrogen evolution[J]. J Alloy Compd, 2017, 727: 86?93.
[59] ZHOU T H, ZHANG G Z, MA P J, et al. Efficient degradation of rhodamine B with magnetically separable Ag3PO4@MgFe2O4 composites under visible irradiation [J]. J Alloy Compd, 2018, 735: 1277?1290.
[60] HOU G Q, ZHANG Y J, GAO S J. Enhanced visible-light photocatalytic activities of flower-like ZnFe2O4 decorated with Ag3PO4 nanoparticles [J]. Mater Lett, 2017, 209: 598?601.
[61] 曹启花, 沈相宜, 肖玲. 磁性Ag3PO4/壳聚糖/Fe3O4 复合催化剂的制备及其可见光催化性能[J]. 武汉大学学报: 理学版, 2017, 63(4): 297?304.
CAO Qihua, SHEN Xiangyi, XIAO Ling. J Wuhan University: Nat Sci Ed(in Chinese), 2017, 63(4): 297?304.
[62] 王鹏飞, 桂明生, 彭慧, 等. Ag3PO4/Bi2Fe4O9 复合催化剂的制备及其光催化性能[J]. 材料科学与工程学报, 2017, 35(3): 485?488.
WANG Pengfei, GUI Mingsheng, PENG Hui, et al. J Mater Sci Eng (in Chinese), 2017, 35(3): 485?488.
[63] WANG P, LI Y R, LIU Z M, et al. In-situ deposition of Ag3PO4 on TiO2 nanosheets dominated by (001) facets for enhanced photocatalytic activities and recyclability[J]. Ceram Int, 2017, 43(15): 11588?11595.
[64] PAN J Q, ZHANG X F, MEI J, et al. The cotton cellulose nanofibers framework of Z-scheme ZnO/Ag3PO4 heterojunction for visible-light photocatalysis[J]. J Mater Sci-Mater EL, 2017, 28(23): 17744.
[65] YAN T J, ZHANG H W, LIU Y P, et al. Fabrication of robust M/Ag3PO4 (M=Pt, Pd, Au) Schottky-type heterostructures for improved visible-light photocatalysis[J]. RSC Adv, 2014, 4(70): 37220?27230.
[66] 张保龙, 单妍. Ag3PO4/Ag复合材料的制备及可见光催化性能[J]. 青岛科技大学学报: 自然科学版, 2017, 38(5): 61?65.
ZHANG Baolong, SHAN Yan. J Qingdao Univer Sci Technol: Nat Sci Ed(in Chinese), 2017, 38(5): 61?65.
[67] YAN T J, TIAN J, GUAN W F, et al. Ultra-low loading of Ag3PO4 on hierarchical In2S3 microspheres to improve the photocatalytic performance: The cocatalytic effect of Ag and Ag3PO4[J]. Appl Catal B-Environ, 2017, 202: 84?94. 
[68] ZHANG X Y, ZHANG H X, XIANG Y Y, et al. Synthesis of silver phosphate/graphene oxide composite and its enhanced visible light photocatalytic mechanism and degradation pathways of tetrabromobisphenol A[J]. J Hazard Mater, 2018, 342: 353?363.
[69] 胡洁, 祝建中, 丁莹, 等. 磷酸银-介孔炭复合光催化材料性能的研究[J]. 无机盐工业, 2016, 48(7): 77?80.
HU Jie, ZHU Jianzhong, DING Ying, et al. Inorg Chem Ind(in Chinese), 2016, 48(7): 77?80.
[70] XIE, M Y, ZHANG T L. One-pot, facile fabrication of a Ag3PO4-based ternary Z-scheme photocatalyst with excellent visible-light photoactivity and anti-photocorrosion performance[J]. Appl Surf Sci, 2018, 436: 90?101.
[71] 张翠平, 刘娟. C-PANI/Ag/Ag3PO4 复合材料增强可见光光催化性能[J]. 高校化学工程学报, 2017, 31(3): 618?625.
ZHANG Cuipin, LIU Juan. J Chem Eng Chin Univ(in Chinese), 2017, 31(3): 618?625.
[72] 邵淑文, 王楚璇, 张涛, 等. 共沉淀法制备 Ag3PO4/MWCNTs 复合光催材料及其表征与降解染料废水[J]. 北京化工大学学报: 自然科学版, 2017, 44(4): 69?75. 
HAO Shuwen, WANG Chuxuan, ZHANG Tao, et al. J Beijing Univ Chem Technol: Nat Sci Ed(in Chinese), 2017, 44(4): 69?75.
[73] 王兴鹏, 禹兴海, 韩玉琦, 等. 纳米复合可见光催化剂Ag3PO4/凹凸棒石的制备及其性能研究[J]. 环境污染与防治, 2017, 39(3): 244?253.
WANG Xinpeng, YU Xinhai, HAN Yuqi, et al. Environ Pollut Prevent(in Chinese), 2017, 39(3): 244?253.
[74] 邹平, 陈彦君, 朱鹏飞, 等. Ag3PO4/硅藻土可见光催化降解盐酸四环素性能研究[J]. 非金属矿, 2017, 40(5): 90?92.
ZOU Ping, CHEN Yanjun, ZHU Pengfei, et al. Non-Met Mines(in Chinese), 2017, 40(5): 90?92.
[75] 徐志兵, 黄如全, 刘坤. 磷酸银/沸石复合光催化剂制备及其性能研究[J]. 人工晶体学报, 2016, 45(4): 1110?1114.
XU Zhibing, HUANG Ruquan, LIU Kun. J Synth Cryst(in Chinese), 2016, 45(4): 1110?1114.
[76] LIU L, QI Y H, LU J R, et al. A stable Ag3PO4@g-C3N4 hybrid core@shell composite with enhanced visible light photocatalytic degradation[J]. Appl Catal B-Environ, 2016, 183: 133?141.
[77] TIAN L, XIAN X Z, CUI X K, et al. Fabrication of modified g-C3N4 nanorod/Ag3PO4 nanocomposites for solar-driven photocatalytic oxygen evolution from water splitting[J]. Appl Surf Sci, 2018, 430: 301?305.
[78] ZHOU L, ZHANG W, CHEN L, et al. Z-scheme mechanism of photogenerated carriers for hybrid photocatalyst Ag3PO4/g-C3N4 in degradation of sulfamethoxazole[J]. J Colloid Interface Sci, 2017, 487: 410?417. 
[79] YOU M Z, PAN J Q, CHI B B, et al. The visible light hydrogen production of the Z-Scheme Ag3PO4/Ag/g-C3N4 nanosheets composites[J]. J Mater Sci EL, 2018, 53(3):1978?1986.
[80] YANG X F, CHEN Z P, XU J S, et al. Tuning the morphology of g-C3N4 for improvement of Z-scheme photocatalytic water oxidation[J]. ACS Appl Mater Interfaces, 2015, 7(28): 15285?15293.
[81] HE Y M, ZHANG L H, TEMG B T, et al. A new application of Z-scheme Ag3PO4/g-C3N4 composite in converting CO2 to fuel[J]. Environ Sci Technol, 2014, 49(1): 649?656.
[82] SOFI F A, MAJID K, MEHRAJ O. The visible light driven copper based metal-organic- framework heterojunction: HKUST-1@Ag- Ag3PO4 for plasmon enhanced visible light photocatalysis[J]. J Alloy Compd, 2018, 737: 798?808.
[83] ABDELHAMEED R M, TOBALDI D M, KARMAOUI M. Engineering highly effective and stable nanocomposite photocatalyst based on NH2-MIL-125 encirclement with Ag3PO4 nanoparticles[J]. J Photochem Photobiol A, 2018, 351: 50-58.
[84] LIU L, DING L, AN W J, et al. A stable Ag3PO4@PANI core@shell hybrid: Enrichment photocatalytic degradation with ??? conjugation[J]. Appl Catal B-Environ, 2017, 201: 92?104.
[85] HU P R, LIU L, AN W J, et al. Use of a core-shell composite Ag3PO4@TCNQ to improve photocatalytic activity and stability[J]. Appl Surf Sci, 2017, 425: 329?339.
[86] TANG C N, LIU E Z, WAN J, et al. Co3O4 nanoparticles decorated Ag3PO4 tetrapods as an efficient visible-light-driven heterojunction photocatalyst[J]. Appl Catal B-Environ, 2016, 181: 707?715.
[87] SHAVEISI Y, SHARIFNIA S. Deriving Ag3PO4-CaO composite as a stable and solar light photocatalyst for efficient ammonia degradation from wastewater[J]. J Energy Chem, 2018, 27(1): 290?299.
[88] HUANG T Y, CHEN Y J, LAI C Y, et al. Synthesis, characterization, enhanced sunlight photocatalytic properties, and stability of Ag/Ag3PO4 nanostructure-sensitized BiPO4[J]. RSC Adv, 2015, 5: 43854?43862.
[89] MOHAGHEGH N, RAHIMI E. BiPO4 photocatalyst employing synergistic action of Ag/Ag3PO4 nanostructure and graphene nanosheets[J]. Solid State Sci, 2016, 56: 10?15.
[90] MITRA M, HABIBI-YANGJEH A. Novel magnetically separable g-C3N4/Fe3O4/Ag3PO4/Co3O4 nanocomposites: Visible-light-driven photocatalysts with highly enhanced activity[J]. Adv Powder Technol, 2017, 28(6): 1540?1553.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com