首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
改性小冲压实验法在陶瓷力学性能评价中的应用
作者: 鹏1 范宇驰2 王连军1  莞1 2 
单位:(1. 东华大学材料科学与工程学院 上海 201620 2. 东华大学功能材料研究所 上海 201620) 
关键词:改性小冲压试验法 陶瓷 小样品 力学性能 多场耦合 
分类号:TG711
出版年,卷(期):页码:2019,47(8):0-0
DOI:
摘要:

 通过比较各类小样品测试方法,介绍了改性小冲压(MSP)试验法的基本原理和特点。以对PZT压电陶瓷在电场耦合下的力学性能和Mo/Pb(Zr,Ti)O3 (PSZ)复合材料的高温力学性能评价为例,说明MSP测试方法在多场耦合条件下对小样品陶瓷材料力学性能评价的作用和优势。

基金项目:
国家重点研发计划(2017YFB0703200)。
作者简介:
参考文献:

 [1] LUCAS G E. The development of small specimen mechanical test techniques[J]. J Nucl Mater, 1983, 117(8): 327–339.

[2] JUNG P, HISHINUMA A, LUCAS G E, et al. Recommendation of miniaturized techniques for mechanical testing of fusion materials in an intense neutron source[J]. J Nucl Mater, 1996, 232(2/3): 186–205.
[3] TAKAGI, Kenta, KIKUCHI, et al. Ferroelectric and photostrictive properties of fine-grained PLZT ceramics derived from mechanical alloying[J]. J Am Ceram Soc, 2010, 87(8): 1477–1482.
[4] PENG Q S, JIANG W, LI J F. Preparation of PLZT Powders from Oxides via High-Energy Ball Milling Process[J]. Key Eng Mater, 2004, 280-283: 623–626.
[5] OKADA A, HAMILTON M L, GARNER F A. Microbulge testing applied to neutron irradiated materials[J]. J Nucl Mater, 1990, s 179–181(3): 445–448.
[6] LUCAS G E, SHECKHERD J W, ODETTE G R, et al. Shear punch tests for mechanical property measurements in TEM disc-sized specimens[J]. J Nucl Mater, 1984, 122(1): 429–434.
[7] HANKIN G L, TOLOCZKO M B, HAMILTON M L, et al. Validation of the shear punch–tensile correlation technique using irradiated materials[J]. J Nucl Mater, 1998, s 258–263(4): 1651–1656.
[8] WACHTMAN J,CAPPS AND W, MANDEL J. Biaxial flexure tests of ceramic substrates[J]. J Mater, 1972, 7(2): 188–194.
[9] LUCAS G E, ODETTE G R, SOKOLOV M, et al. Recent progress in small specimen testtechnology[J]. J Nucl Mater, 2002, 307(2): 1600–1608.
[10] 新野正之, 平井敏雄, 渡边龙三. 功能梯度材料[J]. 日本复合材料科学会志, 1987, 13(6): 257–264.
[11] AGARWAL B. Transient Temperature Distribution in Composites with Layers of Functionally Graded Materials (FGMs)[J]. J Reinforced Plastics Composites, 2006, 24(18): 1929–1963.
[12] ZHAI P C, ZHANG Q J, YUAN R Z. Processing-working stress unified analysis model and optimum design of ceramic-metal functionally graded materials[M]. Elsevier. Functional Graded Materials, 1996: 457–462.
[13] OKADA A, YOSHIIE T, KOJIMA S, et al. Correlation among a variety of miniaturized mechanical tests and their application to D-T neutron-irradiated metals[J]. J Nucl Mater, 1985, 133(8): 321–325.
[14] FESSLER H, FRICKER D C. A Theoretical Analysis of the Ring-On-Ring Loading Disk Test[J]. J Am Ceram Soc, 2010, 67(9): 582–588.
[15] CHAO L Y, SHETTY D K. Reliability Analysis of Structural Ceramics Subjected to Biaxial Flexure[J]. J Am Ceram Soc, 2010, 74(2): 333–344.
[16] HULM B J, PARKER J D, EVANS W J. Biaxial strength of advanced materials[J]. J Mater Sci, 1998, 33(13): 3255–3266.
[17] 熊智. MSP方法评价陶瓷材料力学性能的基础和应用研究[D]. 2006.
[18] FENG C, LIU Q Z, WANG H F, et al. Polarization switching and fatigue in Pb(Zr0.52Ti0.48)O3 films sandwiched by oxide electrodes with different carrier types[J]. Appl Phys Lett, 2007, 90(19): 1929071–1929073.
[19] BULLOCH J H. Toughness losses in low alloy steels at high temperatures: an appraisal of certain factors concerning the small punch test[J]. Int J Pressure Vessels  Piping, 1998, 75(11): 791–804.
[20] SHINDO Y, YAMAGUCHI Y, HORIGUCHI K. Small punch testing for determining the cryogenic fracture properties of 304 and 316 austenitic stainless steels in a high magnetic field[J]. Cryogenics, 2004, 44(11): 789–792.
[21] KURTZ S M, FOULDS J R, JEWETT C W, et al. Validation of a small punch testing technique to characterize the mechanical behaviour of ultra-high-molecular-weight polyethylene[J]. Biomaterials, 1997, 18(24): 1659–1663.
[22] KURTZ S M, RIMNAC C M, PRUITT L, et al. The relationship between the clinical performance and large deformation mechanical behavior of retrieved UHMWPE tibial inserts[J]. Biomaterials, 2000, 21(3): 283–291.
[23] GIDDINGS V L, KURTZ S M, JEWETT C W, et al. A small punch test technique for characterizing the elastic modulus and fracture behavior of PMMA bone cement used in total joint replacement[J]. Biomaterials, 2001, 22(13): 1875–1881.
[24] SHINDO Y, NARITA F, HORIGUCHI K, et al. Electric fracture and polarization switching properties of piezoelectric ceramic PZT studied by the modified small punch test[J]. Acta Mater, 2003, 51(16): 4773–4782.
[25] DENG Q H, WANG L J, XU H J, et al. Fatigue Life Investigation of PZT Ceramics by MSP Method[J]. J Inorg Mater, 2013, 27(10): 1047–1052.
[26] LIANJUN W, WAN J, LIDONG C, et al. Microstructure of Ti5Si3–TiC–Ti3SiC2 and Ti5Si3–TiC nanocomposites in situ synthesized by spark plasma sintering[J]. J Mater Res, 2004, 19(10): 3004–3008.
[27] XIONG Z, JIANG W, WANG L J, et al. Cyclic Fatigue of Alumina Ceramics as Evaluated by Modified Small Punch Tests[J]. Key Eng Materi, 2007, 336/338: 2426–2428.
[28] VINER D, HULME M, RAPER S C B, et al. High temperature deformation and fracture processes in 214Cr1Mo-12Cr12Mo14V weldments[J]. Int J Pressure Vessels Piping, 1995, 63(1): 45–54.
[29] ULE B, SUSTAR T, RODIC T, et al. Small punch test method assessment for the determination of the residual creep life of service exposed components[J]. Technol Law Insur, 1999, 4(3/4): 283–293.
[30] FINARELLI D, ROEDIG M, CARSUGHI F. Small punch tests on austenitic and martensitic steels irradiated in a spallation environment with 530 MeV protons[J]. J Nucl Mater, 2004, 328(2): 146–150.
[31] SONG S H, FAULKNER R G, FLEWITT P E J, et al. Small punch test evaluation of neutron-irradiation-induced embrittlement of a Cr–Mo low-alloy steel[J]. Mater Charact, 2004, 53(1): 35–41.
[32] BULLOCH J H. Toughness losses in low alloy steels at high temperatures:  an appraisal of certain factors concerning the small punch test[J]. Int J Pressure Vessels Piping, 1998, 75(11): 791–804.
[33] SHIN J H, HUR S K, HA C G, et al. Mechanical characterization in PSZ/NiCrAlY composites fabricated by plasma activated sintering[J]. J Alloys Compd, 2000, 313(1): 248–257.
[34] LEÓN C A, DREW R A L. Small punch testing for assessing the tensile strength of gradient Al/Ni–SiC composites[J]. Mater Lett, 2002, 56(5): 812–816.
[35] WANG H, WERESZCZAK A A, LIN H T. Fatigue response of a PZT multilayer actuator under high-field electric cycling with mechanical preload[J]. J Appl Phys, 2009, 105(1): 014112.
[36] ODETTE G R, HE M, GRAGG D, et al. Some recent innovations in small specimen testing[J]. J Nucl Mater, 2002, 307(2): 1643–1648.
[37] LI J F, PAN W, SATO F, et al. Mechanical properties of polycrystalline TiSiC at ambient and elevated temperatures[J]. Acta Mater, 2001, 49(6): 937–945.
[38] LI J F, WANG S, WAKABAYASHI K, et al. Properties of Modified Lead ZirconateTitanate Ceramics Prepared at Low Temperature (800 °C) by Hot Isostatic Pressing[J]. J Am Ceram Soc, 2010, 83(4): 955–957.
[39] SHEN Z Y, LI J F, WANG K, et al. Electrical and Mechanical Properties of Fine-Grained Li/Ta-Modified (Na,K)NbO3‐Based Piezoceramics Prepared by Spark Plasma Sintering[J]. J Am Ceram Soc, 2010, 93(5): 1378–1383.
[40] RU J, FAN Y, ZHOU W, et al. Electrically Conductive and Mechanically Strong Graphene/Mullite Ceramic Composites for High-Performance Electromagnetic Interference Shielding [J]. ACS Appl Mater Interfaces, 2018, 10(45): 39245–39256.
[41] 江莞, 王刚, 吴历斌, 等. MSP试验法评价Mo/PSZ系复合材料的强度特性(Ⅰ)[J]. 无机材料学报, 2002, 17(5): 1034–1040.
JIANG Wan, WANG Gang, WU Libin, et al. J Inong Mater (in Chinese), 2002, 17(5): 1034–1040.
[42] KIKUCHI K. Strength proof evaluation of diffusion-jointed W/Ta interfaces by small punch test[J]. J Nucl Mater, 2003, 321(2): 129–134.
[43] LI J F, TAKAGI K, TERAKUBO N, et al. Electrical and Mechanical Properties of Piezoelectric Ceramic/Metal Composites in the Pb(Zr,Ti)O3/Pt System[J]. Appl Phys Lett, 2001, 79(15): 2441–2443.
[44] DENG Q, WANG L, WANG H, et al. Establishment and Application of the MSP Test under Multi-Field Coupling[J]. Rare Metal Mater Eng, 2011, 40(22): 421–424.
[45] ZHANG H L, LI J F, ZHANG B P. Fabrication and evaluation of PZT/Ag composites and functionally graded piezoelectric actuators[J]. J Electroceram, 2006, 16(4): 413–417.
[46] LI J F, WANG S, WAKABAYASHI K, et al. Properties of Modified Lead ZirconateTitanate Ceramics Prepared at Low Temperature (800 °C) by Hot Isostatic Pressing[J]. J Am Ceram Soc, 2010, 83(4): 955–957.
[47] LI J F, PAN W, SATO F, et al. Mechanical properties of polycrystalline TiSiC at ambient and elevated temperatures[J]. Acta Mater, 2001, 49(6): 937–945.
[48] 江莞, 李敬锋. Mo/PSZ系复合材料的热学、力学性能与组成的关系[J]. 金属学报, 2002, 38(4): 438–442.
JIANG Yuan, LI Jingfeng.  Acta Metall Sin (in Chinese), 2002, 38(4): 438–442.
[49] KIKUCHI K. Strength proof evaluation of diffusion-jointed W/Ta interfaces by small punch test[J]. Nucl Mater, 2003, 321(2): 129–134.
[50] BEXELL M, JOHANSSON S. Fabrication and evaluation of a piezoelectric miniature motor[J]. Sensors Actuators A Phys, 1999, 75(1): 8–16.
[51] TRESSLER J F, ALKOY S, NEWNHAM R E. Piezoelectric Sensors and Sensor Materials[J]. J Electroceram, 1998, 2(4): 257–272.
[52] LEÓN C A, DREW R A L. Small punch testing for assessing the tensile strength of gradient Al/Ni–SiC composites[J]. Mater Lett, 2002, 56(5): 812–816.
[53] KERKAMM I, HILLER P, GRANZOW T, et al. Correlation of small- and large-signal properties of lead zirconate titanate multilayer actuators[J]. Acta Mater, 2009, 57(1): 77–86.
[54] XIE S, XU J, CHEN Y, et al. Poling effect and sintering temperature dependence on fracture strength and fatigue properties of bismuth titanate based piezoceramics [J]. Ceram Int, 2018, 44(16): 20432–20440.
[55] KURIHARA K, KONDO M. High-strain piezoelectric ceramics and applications to actuators[J]. Ceram Int, 2008, 34(4): 695–699.
[56] DENG Q, FAN Y, WANG L, et al. Effects of Polarization on Mechanical Properties of Lead Zirconate Titanate Ceramics Evaluated by Modified Small Punch Tests [J]. Jpn J Appl Phys, 2012, 51(1): 0115010-0115014
[57] FU R, QIAN C F, ZHANG T Y. Electrical fracture toughness for conductive cracks driven by electric fields in piezoelectric materials[J]. Appl Phys Lett, 2000, 76(1): 126–128.
[58] 邓启煌. 多场耦合条件下MSP测试系统的建立及在PZT陶瓷中的应用[D]. 东华大学, 2012.
[59] Chaplya P M, Carman G P. Dielectric and piezoelectric response of lead zirconate–lead titanate at high electric and mechanical loads in terms of non-180° domain wall motion[J]. J App Phys, 2001, 90(10): 5278–5286.
[60] 邓启煌, 王连军, 王宏志, 等. 锆钛酸铅陶瓷在力电耦合场下疲劳性能的评价[J]. 无机材料学报, 2012, 27(4): 358–362.
DENG Qihuang, WANG Lianjun, WANG Hongzhi, et al. J Inorg Mater(in Chinese), 2012, 27(4): 358–362.
[61] 江莞, 白光照, 王刚, 等. MSP试验法评价Mo/PSZ系复合材料的强度特性(Ⅱ)[J]. 无机材料学报, 2002, 17(5): 827–832.
JIANG Yuan, BAI Guangzhao, WANG Gang, et al. J Inorg Mater(in Chinese), 2002, 17(5) : 827–832.
 
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com