首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
基于温度-应力试验的粉煤灰混凝土抗裂性能
作者: 杨1 2 王亦聪1  凡1 顾春平1 2 马成畅1 2 刘金涛1 2 魏洪钢3 
单位:(1. 浙江工业大学建筑工程学院 杭州 310023 2. 浙江省工程结构与防灾减灾技术研究重点实验室 杭州 310023  3. 浙江华威混凝土有限公司 杭州 310018) 
关键词:绝热温升 温度-应力试验 粉煤灰混凝土 抗裂性能 
分类号:TU528
出版年,卷(期):页码:2019,47(8):0-0
DOI:
摘要:

 在混凝土中掺加粉煤灰是抑制大体积混凝土早期开裂的有效措施之一。以水胶比0.42,掺量分别为40%和50%的粉煤灰混凝土(FA40、FA50)为研究对象,利用温度-应力试验机,在绝热温升模式和100%约束度条件下研究粉煤灰混凝土的温升、约束应力、应变和徐变性能,并综合评价了两种混凝土的早期抗裂性能。结果发现:升温阶段,FA50的早期温度、应变和应力发展均高于FA40;在恒温阶段,2种混凝土均发生了明显的应力松弛;在降温阶段,试件处于拉伸应力作用下时,FA40的徐变高于FA50。基于试验结果对两种混凝土早期抗裂性能的综合评价表明:FA40早期抗裂性能优于FA50。

 
基金项目:
国家自然科学基金资助项目(51778583);浙江省建设科研项目(2017K118);杭州市建设科研项目(2017022)。
作者简介:
参考文献:

 [1] MEHTA P K, BURROWS R W. Building durable structures in the 21st century[J]. Indian Concr J, 2001, 75(7): 437–443.

[2] 王甲春, 阎培渝. 粉煤灰混凝土绝热温升的试验研究[J]. 沈阳建筑大学学报(自然科学版), 2006(1): 118–121.
WANG Jiachun, YAN Peiyu. J Shenyang Jianzhu Univ (Nat Sci Ed) (in Chinese), 2006(1): 118–121.
[3] 匡楚胜, 李涛, 谢桂, 等. 混凝土掺粉煤灰若干问题探讨[J]. 混凝土, 2004(7): 40–41.
KUANG Chusheng, LI Tao, XIE Gui, et al. Concrete (in Chinese), 2004(7): 40–41.
[4] NI T, YANG Y, WU D, et al. Influences of environmental conditions on the cracking tendency of dry-mixed plastering mortar[J]. Adv Mater Sci Eng, 2018, 2018: 1–9.
[5] SPRINGENSCHMID R. Prevention of thermal cracking in concrete at early age[M]. London: E&FN Spon, 1998: 1–10.
[6] 蔡跃波, 丁建彤, 陈波, 等. 基于温度应力试验机的大坝混凝土综合抗裂性评价[J]. 东南大学学报: 自然科学版, 2010, 40(1): 171–175.
CAI Yuebo, DING Jiantong, CHEN Bo, et al. J Southeast Univ (Nat Sci Ed) (in Chinese), 2010, 40(1): 171–175.
[7] 张国志, 屠柳青, 夏卫华, 等. 混凝土早期开裂评价指标研究[J]. 混凝土, 2005(5): 13–17.
ZHANG Guozhi, TU Liuqing, XIA Weihua, et al. Concrete (in Chinese), 2005(5): 13–17.
[8] KOVLER K, BENTUR A. Cracking Sensitivity of Normal– and High–Strength Concretes[J]. ACI Mater J, 2009, 106(6): 537–542.
[9] SHEN D, JIANG J, WANG W, et al. Tensile creep and cracking resistance of concrete with different water–to-cement ratios at early age[J]. Constr Build Mater, 2017, 146:410–418.
[10] SHEN D, JIANG J, JIAO Y, et al. Early-age tensile creep and cracking potential of concrete internally cured with pre-wetted lightweight aggregate[J]. Constr Build Mater, 2017, 135: 420–429.
[11] 江晨晖, 杨杨, 马成畅, 等. 基于温度-应力试验和层次分析法的混凝土抗裂性能综合评价[J]. 硅酸盐学报, 2015, 43(8): 1017–1023.
JIANG Chenhui, YANG Yang, MA Chengchang, et al. J Chin Ceram Soc, 2015, 43(8): 1017–1023.
[12] KHATIB J M. Performance of self-compacting concrete containing fly ash[J]. Constr Build Mater, 2008, 22(9): 1963–1971.
[13] 赵庆新, 孙伟, 郑克仁, 等. 粉煤灰掺量对高性能混凝土徐变性能的影响及其机理[J]. 硅酸盐学报, 2006, 34(4): 446–451.
ZHAO Qinxin, SUN Wei, ZHENG Keren, et al. J Chin Ceram Soc, 2006, 34(4):446–451.
[14] 丁建彤, 陈波, 蔡跃波, 孙伟. 温度历程对早龄期混凝土抗裂性的影响[J]. 江苏大学学报(自然科学版), 2011, 32(2): 236–240.
DING Jiantong, CHEN Bo, SUN Wei. J Jiangsu Univ (Nat Sci Ed) (in Chinese), 2011, 32(2): 236–240.
[15] ZUNINO F, CASTRO J, LOPEZ M. Thermo-mechanical assessment of concrete microcracking damage due to early-age temperature rise[J]. Constr Build Mater, 2015, 81(6): 140–153..
[16] ATI? C D. Heat evolution of high-volume fly ash concrete[J]. Cem Concr Res, 2002, 32(5): 751–756.
[17] MA S, LI W, ZHANG S, et al. Influence of sodium gluconate on the performance and hydration of Portland cement[J]. Constr Build Mater, 2015, 91: 138–144.
[18] 李华, 孙伟, 左晓宝. 矿物掺合料改善水泥基材料抗硫酸盐侵蚀性能的微观分析[J]. 硅酸盐学报, 2012, 40(8): 1119–1126.
LI Hua, SUN Wei, ZUO Xiaobao. J Chin Ceram Soc, 2012, 40(8): 1119–1126.
[19] 张云升, 孙伟, 郑克仁, 等. 水泥-粉煤灰浆体的水化反应进程[J]. 东南大学学报(自然科学版), 2006, 36(1): 118–123.
ZHANG Yunsheng, SUN Wei, ZHENG Keren, et al. J Southeast Univ (Nat Sci Ed) (in Chinese), 2006, 36(1): 118–123.
[20] KIM B G, LEE K M, Lee H K. Autogenous shrinkage of high-performance concrete containing fly ash[J]. Mag Concr Res, 2003, 55(6): 507–515.
[21] 徐真剑, 祝昌暾, 杨杨, 等. 高强混凝土的早期力学性能及其收缩特性[J]. 混凝土, 2005(12): 45–48.
XU Zhenjian, ZHU Changdun, YANG Yang, et al. Concrete (in Chinese), 2005(12): 45–48.
[22] KOVLER K. Tensile Creep Behavior of High Strength Concretes at Early Ages[J]. Mater Struct, 1999(32): 383–387.
[23] ALTOUBAT S, LANGE D A, Tensile basic creep: measurements and behavior at early age[J]. ACI Mater J, 1998(5): 386–393.
[24] 陈波, 孙伟, 丁建彤. 基于温度–应力试验的混凝土抗裂性研究进展[J]. 硅酸盐学报, 2013(8): 1124–1133.
CHEN Bo, SUN Wei, DING Jiantong. J Chin Ceram Soc, 2013(8): 1124–1133.
[25] 吴恺. 基于温度应力试验机(TSTM)的大坝混凝土抗裂性能实验研究[D]. 杭州: 浙江工业大学, 2014.
WU Kai. Experimental study for crack resistance on dam concrete based on temperature stress testing machine (TSTM)[D]. Hangzhou: Zhejiang University of Technology, 2014.
[26] ASTM, Standard Test Method for Determining Age at Cracking and Induced Tensile Stress Characteristics of Mortar and Concrete Under Restrained Shrinkage, ASTM Int, West Conshohocken(PA), 2013 (Standard C 1581–04).
[27] KOVLER K, BENTUR A. Cracking Sensitivity of Normal- and High-Strength Concretes[J]. ACI Mater J, 2009, 106(6): 537–542.
[28] ZHUTOVSKY S, KOVLER K, ZHUTOVSKY S, et al. Effect of concrete and binder composition on cracking sensitivity[C]. Proceedings of the International Conference on Concrete Repair, Rehabilitation and Retrofitting, ICCRRR, 2012.
[29] WANG L, YANG H Q, ZHOU S H, et al. Mechanical properties, long-term hydration heat, shrinkage behavior and crack resistance of dam concrete designed with low heat Portland (LHP) cement and fly ash[J]. Constr Build Mater, 2018, 187: 1073–1091
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com