首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
粉煤灰和粉煤灰水泥石的汞释放规律
作者: 雯1 张朝阳1 孔祥明1 禚玉群2 
单位:(1. 清华大学土木工程系建筑材料研究所 北京 100084  2. 清华大学能源与动力工程系 热科学与动力工程教育部重点实验室 北京100084) 
关键词: 粉煤灰 水泥石 释放行为 
分类号:TU525
出版年,卷(期):页码:2019,47(8):0-0
DOI:
摘要:

 采用3种不同来源的粉煤灰,与普通硅酸盐水泥按质量比1:1混合制备水灰比为0.4的水泥浆。养护28 d后,采用自制的汞测试系统研究了硬化水泥浆粉末的汞释放行为。结果表明:在90 d的测试周期内,零价汞蒸气从粉煤灰及水泥石中持续释放;在常温自然条件下,3种粉煤灰在90 d内的汞释放量最大达到39.7 ng/g,而3种硬化水泥浆粉末的汞释放量最大达到18.5 ng/g。硬化水泥浆粉末和粉煤灰的汞释放呈相似的动力学过程,表明水泥石中的C-S-H凝胶对零价汞的固化效果非常小。水泥中的水化产物对零价汞的释放仅仅起到稀释作用和物理包裹作用,并无化学固化作用。汞的释放速率同时受到颗粒内扩散和表面脱附过程的影响。温度和湿度的增加会显著促进汞的释放速率。

基金项目:
作者简介:
参考文献:

 [1] BERNDT M L. Properties of sustainable concrete containing fly ash, slag and recycled concrete aggregate[J]. Constr Build Mater, 2009, 23(7): 2606–2613.

[2] ZHANG X F, NI W, WANG W. Preparation of cementitious material with slag and fly-ash[J]. Mater Rev, 2009, 23(12): 93–101.
[3] 中华人民共和国国家发展改革委员会. 大宗固体废物综合利用实施方案[S]. 2011.
National Development and Reform Commission. Implementation plan for comprehensive utilization of massive solid wastes [S]. 2011.
[4] PRASAD B K R, ESKANDARI H, REDDY B V V. Prediction of compressive strength of SCC and HPC with high volume fly ash using ANN[J].Constr Build Mater, 2009, 23(1): 117–128.
[5] BENDAPUDI S C K, SAHA P. Contribution of fly ash to the properties of mortar and concrete[J]. Int J Earth Sci Eng, 2011, 4: 1017–1023.
[6] UYSAL M, AKYUNCU V. Durability performance of concrete incorporating class f and class C fly ashes[J]. Constr Build Mater, 2012, 34: 170–180.
[7] 阎培渝. 粉煤灰在复合胶凝材料水化过程中的作用机理[J]. 硅酸盐学报, 2007, 35: 167–170.
YAN Peiyu. J Chin Ceram Soc, 2007, 35: 167–170.
[8] PAVLISH J H, SONDREAL E A, MANN M D, et al. Status review of mercury control options for coal-fired power plants[J]. Fuel Process Technol, 2003, 82: 89–165.
[9] 郑楚光, 徐明厚, 张军营, 等. 燃煤痕量元素的排放与控制[M]. 武汉: 湖北科学技术出版社, 2002.
[10] DASTOORA A P, LAROCPUE Y. Global circulation of atmospheric mercury: a modeling study[J]. Atmos Environ, 2004, 38: 147–161.
[11] 王悦. 重金属离子在水泥熟料中的固化行为研究[D]. 北京: 中国建筑材料科学研究总院, 2013.
WANG Yue. Research on solidification behavior of heavy metal ions in cement clinker (in Chinese, dissertation). Beijing: China Building Materials Academy, 2013.
[12] VOLLPRACHT A, BRAMESHUBER W. Binding and leaching of trace element in Portland cement pastes[J]. Cem Concr Res, 2016, 79: 76–92.
[13] HEKAL E E, HEGAZI W S, KISHAR E A, et al. Solidification/stabilization of Ni(Ⅱ) by various cement pastes[J]. Constr Build Mater, 2011, 25: 109–114. 
[14] WANG F Y, WANG S X, ZHANG L, et al. Characteristics of mercury cycling in the cement production process[J]. J Hazard Mater, 2016, 302: 27–35.
[15] NORTON G A, YANG H Q, BROWN R C, et al. Heterogeneous oxidation of mercury in simulated post combustion conditions[J]. Fuel, 2003, 82(2): 107–116.
[16] ABAD-VALLE P, LOPEZ-ANTON M A, DIAZ-SOMOANO M, et al. The role of unburned carbon concentrates from fly ashes in the oxidation and retention of mercury[J]. Chem Eng J, 2011, 174(1): 86–92.
[17] YANG J P, MA S M, ZHAO Y C, et al. Mercury emission and speciation in fly ash from a 35 MWth large pilot boiler of oxyfuel combustion with different flue gas recycle[J]. Fuel, 2017, 195: 174–181.
[18] HO T C, YANG P, KUO T H, et al. Characteristics of mercury desorption from sorbents at elevated temperatures[J]. Waste Manage, 1998, 18: 445–452.
[19] MCWHINNEY H G, COCKE D L, BALKE K, et al. An investigation of mercury solidification and stabilization in Portland cement using X-ray Photoelectron Spectroscopy and Energy Dispersive Spectroscopy[J]. Cem Concr Res, 1990, 20: 79–91.
[20] BRIGGS C, GUSTIN M S. Building upon the conceptual model for soil mercury flux: evidence of a link between moisture evaporation and Hg evasion[J]. Water Air Soil Pollut, 2013, 224(10): 1–13.
[21] GUSTIN M S, STAMENKOVIC J. Effect of watering and soil moisture on mercury emissions from soils[J]. Biogeochemistry, 2005, 6(2): 215–232
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com