[1] SEBASTIAN M T. Dielectric materials for wireless communication[M]. Amsterdam: Elsevier, 2010.
[2] PULLAR R C. The synthesis, properties, and applications of columbite niobates (M2+Nb2O6): a critical review[J]. J Am Ceram Soc, 2009, 92(3): 563–577.
[3] LEE H J, KIM I T, HONG K S. Dielectric properties of AB2O6 compounds at microwave frequencies (A=Ca, Mg, Mn, Co, Ni, Zn, and B=Nb, Ta)[J]. Jpn J Appl Phys, 1997, 36(10A): L1318–L1320.
[4] KIM D W, KO K H, HONG K S. Influence of copper (II) oxide additions to zinc niobate microwave ceramics on sintering temperature and dielectric properties[J]. J Am Ceram Soc, 2001, 84(6): 1286–1290.
[5] ZHANG Y C, YUE Z X, GUI Z L, et al. Microwave dielectric properties of CuO–V2O5–Bi2O3-doped ZnNb2O6 ceramics with low sintering temperature[J]. J Electroceram, 2005, 14(1): 67–74.
[6] WEE S H, KIM D W, YOO S I, et al. Low temperature sintering of V2O5–added and substituted ZnNb2O6 microwave ceramics[J]. Jpn J Appl Phys, 2004, 43(6R): 3511–3515.
[7] 张迎春, 李龙土, 桂治轮. CaF2掺杂对ZnNb2O6陶瓷烧结行为及介电性能的影响[J]. 压电与声光, 2003, 25(1): 49–51.
ZHANG Yingchun, LI Longtu, GUI Zhilun. Piezoelectrics Acoustooptics (in Chinese), 2003, 25(1): 49–51.
[8] 郑振中, 甘国友, 严继康, 等. 掺BCB低温共烧 ZnNb2O6微波介质陶瓷的研究[J]. 压电与声光, 2010, 32(4): 660–663.
ZHENG Zhenzhong, GAN Guoyou, YAN Jikang, et al. Piezoelectrics Acoustooptics (in Chinese), 2010, 32(4): 660–663.
[9] ZHANG J, YUE Z X, LI L T. Effect of TiO2 on phase composition and microwave dielectric properties of Zn1.01Nb2O6 ceramics[J]. Ceram Int, 2017, 43(S1): S317–S320.
[10] ZHANG Y, DING S H, YOU L, et al. Temperature stable microwave dielectric Ceramic CoTiNb2O8–Zn1.01Nb2O6 with ultra-low dielectric loss[J]. J Electron Mater, 2019, 48(2): 867–872.
[11] JOUNG M R, KIM J S, SONG M E, et al. Effect of Li2CO3 addition on the sintering temperature and microwave dielectric properties of Mg2V2O7 ceramics[J]. J Am Ceram Soc, 2009, 92(9): 2151–2154.
[12] KWEON S H, JOUNG M R, KIM J S, et al. Low temperature sintering and microwave dielectric properties of B2O3-added LiAlSiO4 ceramics[J]. J Am Ceram Soc, 2011, 94(7): 1995–1998.
[13] HUANG C L, CHEN Y C. Influence of V2O5 additions to NdAlO3 ceramics on sintering temperature and microwave dielectric properties[J]. J Eur Ceram Soc, 2003, 23(1): 167–173.
[14] HAKKI B W, COLEMAN P D. A dielectric resonator method of measuring inductive capacities in the millimeter range[J]. IEEE Trans Microw Theory Tech, 1960, 8(4): 402–410.
[15] COURTNEY W E. Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators[J]. IEEE Trans Microw Theory Technol, 1970, 18(8): 476–485.
[16] SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallogr Sect A: Cryst Phys Diffract, Theoret Gener Crystallogr, 1976, 32(5): 751–767.
[17] XU N X, ZHOU J H, YANG H, et al. Structural evolution and microwave dielectric properties of MgO–LiF co-doped Li2TiO3 ceramics for LTCC applications[J]. Ceram Int, 2014, 40(9): 15191–15198.
[18] PANG L X, ZHOU D. A low-firing microwave dielectric material in Li2O–ZnO–Nb2O5 system[J]. Mater Lett, 2010, 64(22): 2413–2415.
[19] KIM E S, CHOI W. Effect of phase transition on the microwave dielectric properties of BiNbO4[J]. J Eur Ceram Soc, 2006, 26(10/11): 1761–1766.
|