首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
压电纤维复合材料能量采集仿真
作者: 雄1  杰2  锋1  静2 
单位:(1. 湖北工程学院化学与材料科学学院  湖北 孝感 432000 2. 武汉理工大学材料科学与工程学院  武汉 430070) 
关键词:压电纤维 复合材料 能量采集 悬臂梁 仿真 
分类号:TN384
出版年,卷(期):页码:2019,47(9):0-0
DOI:
摘要:

 采用多物理场仿真软件建立悬臂梁结构压电纤维复合材料仿真模型,研究了复合材料结构与性能参数对能量采集特性的影响及规律。研究表明:在相同宏观几何条件下,跟压电陶瓷相比,压电纤维复合材料能量采集装置的输出电压更高,且悬臂梁振动时的谐振频率更低,通过调节压电纤维尺寸和纤维含量可以调节输出电压和谐振频率。在固定复合材料尺寸情况下和恒定振动加速度条件下,压电纤维高度越小,压电纤维含量越低,聚合物基体弹性模量越小,则能量采集装置的输出电压越高,谐振频率越低,压电纤维体积分数为20%~30%可以获得较大输出电荷与输出电压。

基金项目:
湖北省教育厅科学技术研究项目(B2017164);国家自然科学基金(51572205)。
作者简介:
参考文献:

 [1] ANTON S R, SODANO H A. A review of power harvesting using piezoelectric materials (2003–2006)[J]. Smart Mater Struct, 2007, 16(3): R1–R21.

[2] BEEBY S P, TUDOR M J, WHITE N M. Energy harvesting vibration sources for microsystems applications[J]. Meas Sci Technol, 2006, 17(12): R175–195.
[3] GLYNNE J P, TUDOR M J, BEEBY S P, et al. An electromagnetic, vibration-powered generator for intelligent sensor systems[J]. Sens Actuator A–Phys, 2004, 110(1–3): 344–349.
[4] CHALLA V R, PRASAD M G, FISHER F T. A coupled piezoelectric–electromagnetic energy harvesting technique for achieving increased power output through damping matching[J]. Smart Mater Struct, 2009, 18(9): 095029.
[5] SUZUKI Y, MIKI D, EDAMOTO M, et al. A MEMS electret generator with electrostatic levitation for vibration-driven energy-harvesting applications[J]. J Micromech Microeng, 2010, 20(10): 104002.
[6] PRIYA S. Advances in energy harvesting using low profile piezoelectric transducers[J]. J Electroceram, 2007, 19(1): 167–184.
[7] 郑木鹏, 侯育冬, 朱满康, 等. 能量收集用压电陶瓷材料研究进展[J]. 硅酸盐学报, 2016, 44(3): 359–366.
ZHEN Mupeng, HOU Yudong, ZHU Mankang, et al. J Chin Ceram Soc, 2016, 44(3): 359–366. 
[8] YANG Z, ZU J. Comparison of PZN–PT, PMN–PT single crystals and PZT ceramic for vibration energy harvesting[J]. Energy Convers Manage, 2016, 122: 321–329.
[9] SAADON S, SIDEK O. A review of vibration-based MEMS piezoelectric energy harvesters[J]. Energy Convers Manage, 2011, 52(1): 500–504.
[10] HWANG G T, PARK H, LEE J H, et al. Self-powered cardiac pacemaker enabled by flexible single crystalline PMN–PT piezoelectric energy harvester[J]. Adv Mater, 2014, 26(28): 4880–4887.
[11] ZENG Z, XIA R, GAI L, et al. High performance of macro-flexible piezoelectric energy harvester using a 0.3PIN–0.4Pb (Mg1/3Nb2/3)O3–0.3PbTiO3 flake array[J]. Smart Mater Struct, 2016, 25(12): 125015.
[12] SEO I T, CHA Y J, KANG I Y, et al. High energy density piezoelectric ceramics for energy harvesting devices[J]. J Am Ceram Soc, 2011, 94(11): 3629–3631.
[13] GAO X, WU J, YU Y, et al. Giant piezoelectric coefficients in relaxor piezoelectric ceramic PNN–PZT for vibration energy harvesting[J]. Adv Funct Mater, 2018, 28(30): 1706895.
[14] OH S R, WONG T C, TAN C Y, et al. Fabrication of piezoelectric polymer multilayers on flexible substrates for energy harvesting[J]. Smart Mater Struct, 2013, 23(1): 5013.
[15] ZHANG Y, SUN H, JEONG C K. Biomimetic porifera skeletal structure of lead-free piezocomposite energy harvesters[J]. ACS Appl Mater Interfaces, 2018, 10: 35539–35546.
[16] BOWEN C R, TOPOLOV V Y, ISAEVA A N, et al. Advanced composites based on relaxor-ferroelectric single crystals: from electromechanical coupling to energy-harvesting applications[J]. Cryst Eng Comm, 2016, 18(32): 5986–6001.
[17] ARRIETA A F, DELPERO T, BERGAMINI A E, et al. Broadband vibration energy harvesting based on cantilevered piezoelectric bi-stable composites[J]. Appl Phys Lett, 2013, 102(17): 173904.
[18] NUNES P J, SENCADAS V, CORREIA V, et al. Energy harvesting performance of piezoelectric electrospun polymer fibers and polymer/ceramic composites[J]. Sens Actuators, A, 2013, 196: 55–62. 
[19] SWALLOW L M, LUO J K, SIORES E, et al. A piezoelectric fibre composite based energy harvesting device for potential wearable applications[J]. Smart Mater Struct, 2008, 17(2): 025017.
[20] SHAN X, SONG R, BO L, et al. Novel energy harvesting: A macro fiber composite piezoelectric energy harvester in the water vortex[J]. Ceram Int, 2015, 41: S763–S767.
[21] 谢焰, 周静, 沈杰, 等. 纤维层厚和叉指电极间距对MFC电输出性能的影响[J]. 硅酸盐通报, 2017, 36(12): 4193–4197.
XIE Yan, ZHOU Jing, SHEN Jie, et al. Bull Chin Ceram Soc (in Chinese), 2017, 36 (12): 4193–4197.
[22] LU F, LEE H P, LIM S P. Modeling and analysis of micro piezoelectric power generators for micro-electromechanical-systems applications[J]. Smart Mater Struct, 2004, 13(1): 57–63
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com