首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
锂离子电池硅/石墨烯负极材料的电化学性能
作者: 思1 2 谢旭佳1 2 谢雍基1 2  斌1 2  丹3 施志聪1 2 
单位:(1. 广东工业大学 材料与能源学院 广州 51000 2. 广东省新能源材料与器件工程技术研究中心 广州 51000  3. 广东猛狮新能源科技股份有限公司 广东 汕头 515000) 
关键词:锂离子电池 负极材料 硅–石墨烯复合材料 高能球磨 
分类号:TM911
出版年,卷(期):页码:2019,47(9):0-0
DOI:
摘要:

 采用高能球磨法制备了纳米硅/石墨烯(Si@G)复合锂离子电池负极材料,并研究了高能球磨时间对Si@G复合材料成分和电化学性能的影响。X射线衍射分析结果表明:球磨40 min后,产物中出现少量电化学惰性的碳化硅。球磨20 min的Si@G复合材料具有最高的首次放电比容量(3 418 mA?h/g)和首次Coulomb效率(89%),但其充放电循环稳定性较差,放电比容量在33次充放电后即衰减为首次的80%。而球磨40 min的Si@G复合材料,充放电84次后,其容量保持率仍为80%。表明没有储锂容量的杂质相SiC虽然导致Si@G负极材料的首次充放电比容量下降,但有利于提高充放电循环稳定性。

基金项目:
国家自然科学基金重点项目(21673051); 广东省科技厅产学研重大专项(2017B010119003)。
作者简介:
参考文献:

 [1] DEDRYVÈRE R, FOIX D, FRANGER S, et al. Electrode/electrolyte interface reactivity in high-voltage spinel LiMn1.6Ni0.4O4/Li4Ti5O12 lithium-ion battery[J]. J Phys Chem C, 2017, 114(24): 10999–11008.

[2] CHEN T, WU J, ZHANG Q, et al. Recent advancement of SiOx based anodes for lithium-ion batteries[J]. J Power Sources, 2017, 363: 126–144. 
[3] YANG Z, XIA Y, JI J, et al. Superior cycling performance of a sandwich structure Si/C anode for lithium ion batteries[J]. RSC Adv, 2016, 6(15): 12107–12113.
[4] KULOVA T L, SKUNDIN A M. Elimination of irreversible capacity of amorphous silicon: Direct contact of the silicon and lithium metal[J]. Russ J Electrochem, 2010, 46(4): 470–475.
[5] XU B, ZHANG J, GU Y, et al. Lithium-storage properties of gallic acid-reduced graphene oxide and silicon-graphene composites[J]. Electrochim Acta, 2016, 212: 473–480.
[6] CHEN Y, HU Y, SHEN Z, et al. Sandwich structure of graphene-protected silicon/carbon nanofibers for lithium-ion battery anodes[J]. Electrochim Acta, 2016, 210: 53–60.
[7] DIMOV N, KUGINO S, YOSHIO M. Mixed silicon-graphite composites as anode material for lithium ion batteries—Influence of preparation conditions on the properties of the material[J]. J Power Sources, 2004, 136(1): 108–114.
[8] YIN S, JI Q, ZUO X, et al. Silicon lithium-ion battery anode with enhanced performance: Multiple effects of silver nanoparticles[J]. J Mater Sci Technol, 2018, 34(10): 1902–1911.
[9] HIGGINS T M, PARK S H, KING P J. A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes[J]. ACS Nano, 2016, 10(3): 3702–3713.
[10] 吴永康, 傅儒生, 刘兆平, 等. 锂离子电池硅氧化物负极材料的研究进展[J]. 硅酸盐学报, 2018, 46(11): 1645–1652.
WU Yongkang, FU Rusheng, LIU Zhaoping, et al. J Chin Ceram Soc, 2018, 46(11): 1645–1652.
[11] ZHOU X, YIN Y X, WAN L J, et al. Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries[J]. Chem Commun, 2012, 48(16): 2198–2200.
[12] JIN Y, TAN Y, HU X, et al. Scalable production of silicon-tin yin-yang hybrid structure with graphene coating for high performance lithium ion battery anodes[J]. ACS Appli Mater Inter, 2017, 9(18): 15388–15393.
[13] 彭鹏, 刘宇, 温兆银. 锂离子电池Si/C/石墨复合负极材料的电化学性能[J]. 无机材料学报, 2013, 28(11): 1195–1199.
PENG Peng, LIU Yu, WEN Zhaoyin. J Inorg Mater (in Chinese), 2013, 28(11): 1195–1199.
[14] YANG Y X, XU Z Z, JIANG X H, et al. High-efficiency and broadband four-wave mixing in a silicon-graphene strip wave guide with a windowed silica top layer[J]. Photon Res, 2018, 6(10): 91–96.
[15] MARONI F, RACCICHINI R, BIRROZZI A, et al. Graphene/silicon nanocomposite anode with enhanced electrochemical stability for lithium-ion battery applications[J]. J Power Sources, 2014, 269(1): 873–882.
[16] ZHANG Y J, CHU H, YUAN L F, et al. Review of Si/graphene nanocomposites as anode materials for Li-ion batteries[J]. Chin J Power Sources, 2018, 42(1): 143–146.
[17] HU R, SUN W, CHEN Y, et al. Silicon/graphene based nanocomposite anode: Large-scale production and stable high capacity for lithium ion batteries[J]. J Mater Chem A, 2014, 2(24): 9118–9125.
[18] GAN L, GUO H, WANG Z, et al. A facile synthesis of graphite/silicon/graphene spherical composite anode for lithium-ion batteries[J]. Electrochim Acta, 2013, 104: 117–123.
[19] SEO Y K, KIM Y W, NISHIMURA T, et al. High-temperature strength of a thermally conductive silicon carbide ceramic sintered with yttria and scandia[J]. J Eur Ceram Soc, 2016, 36(15): 3755–3760.
[20] LUO Y, ZHENG S L, MA S H, et al. Mullite-bonded SiC-whisker-reinforced SiC matrix composites: Preparation, characterization, and toughening mechanisms[J]. J Eur Ceram Soc, 2018, 38(16): 5282–5293. 
[21] TAMAYO A, RUBIO F, ALEJANDRA M, et al. Further characterization of the surface properties of the SiC particles through complementarity of XPS and IGC-ID techniques[J]. Boletín de la Sociedad Española de Cerámica y Vidrio, 2018, 57(6): 231–239.
[22] 杜莉莉, 庄全超, 魏涛, 等. Si/C复合材料电极首次嵌锂过程的电化学阻抗谱研究[J]. 化学学报, 2011, 69(22): 2641–2647.
DU Lili, ZHUNAG Quanchao, WEI Tao, et al. Acta Chim Sin (in Chinese), 2011, 69(22): 2641–2647.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com