首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
凝胶注模工艺制备三维多孔Li1.3Al0.3Ti1.7(PO4)3固态电解质
作者:黄泽亚 赵伟然 汪长安 
单位:(清华大学材料科学与工程学院 新型陶瓷与精细工艺国家重点实验室 北京 100084) 
关键词:固态电解质 离子电导率 凝胶注模 磷酸钛铝锂 
分类号:TQ174
出版年,卷(期):页码:2019,47(10):0-0
DOI:
摘要:

 三维多孔固态电解质是连续型复合电解质的骨架部分。采用共沉淀法制备Li1.3Al0.3Ti1.7(PO4)3 固态电解质粉体,再通过凝胶注模工艺合成了Li1.3Al0.3Ti1.7(PO4)3多孔坯体,并在不同温度下烧结,比较了烧结体的物相组成、显微形貌、收缩率、孔隙率、电导率和激活能。结果表明:在900 ℃以上烧结,坯体发生明显的致密化,并且产生更多的杂相,其致密度升高而电导率降低。在800 ℃烧结的样品,孔隙率在50%以上,具有6.94×10–5 S/cm的电导率,激活能为0.27 eV。所得多孔坯具有较高的孔隙率和电导率,使其适合作为三维有机–无机复合固态电解质的陶瓷框架。

基金项目:
国家自然科学基金(51572145, 51872159);清华大学自主科研计划。
作者简介:
参考文献:

 [1] XIA S, WU X, ZHANG Z, et al. Practical challenges and future perspectives of all-solid-state lithium-metal batteries[J]. Chem, 2018, 5(4): 753–785.

[2] LIU J, BAO Z, CUI Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries[J]. Nat Energy, 2019(4): 180–186.
[3] MANTHIRAM A, YU X W, WANG S F. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nat Rev Mater, 2017, 2(4): 16103.
[4] CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chem Rev, 2017, 117(15): 10403–10473.
[5] CHEN R J, QU W J, GUO X, et al. The pursuit of solid-state electrolytes for lithium batteries: From comprehensive insight to emerging horizons[J]. Mater Horiz, 2016(3), 487–516.
[6] FERGUS J W. Ceramic and polymeric solid electrolytes for lithium-ion batteries[J]. J Power Sources, 2010, 195(15): 4554–4569.
[7] BACHMAN J C, MUY S, GRIMAUD A, et al. Inorganic solid-state electrolytes for lithium batteries: Mechanisms and properties governing ion conduction[J]. Chem Rev, 2016, 116(1): 140–162.
[8] YANG T, ZHENG J, CHENG Q, et al. Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: Mechanism of conductivity enhancement and role of doping and morphology[J]. ACS Appl Mater Interfaces, 2017, 9(26): 21773–21780.
[9] FU K K, GONG Y, DAI J, et al. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries[J]. P Natl Acad Sci USA, 2016, 113(26): 7094–7099.
[10] LIU W, LEE S W, LIN D, et al. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires[J]. Nat Energy, 2017, 2: 17035.
[11] LIU W, LIU N, SUN J, et al. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers[J]. Nano Lett, 2015, 15(4): 2740–2745.
[12] BAE J, LI Y, ZHANG J, et al. A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte[J]. Angew Chem Int Edi, 2018, 57(8): 2096–2100.
[13] CHEN L, LI Y, LI S P, et al. PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”[J]. Nano Energy, 2018, 46: 176–184.
[14] ZHANG X, XIE J, SHI F, et al. Vertically aligned and continuous nanoscale ceramic–polymer interfaces in composite solid polymer electrolytes for enhanced ionic conductivity[J]. Nano Lett, 2018, 18(6): 3829–3838.
[15] ZHAI H, XU P, NING M, et al. A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries[J]. Nano Lett, 2017, 17(5): 3182–3187.
[16] HUPFER T, BUCHARSKY E C, SCHELL K G, et al. Influence of the secondary phase LiTiOPO4 on the properties of Li1+xAlxTi2−x(PO4)3 (x=0; 0.3) [J]. Solid State Ionics, 2017, 302: 49–53. 
[17] XU X, WEN Z, WU X, et al. Lithium ion-conducting glass–ceramics of Li1.5Al0.5Ge1.5(PO4)3–xLi2O (x=0.0–0.20) with good electrical and electrochemical properties[J]. J Am Ceram Soc, 2007, 90(9): 2802–2806.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com