首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
非晶无机固态电解质的研究进展
作者:  倪明珠   夏求应   岳继礼   
单位:(南京理工大学材料科学与工程学院 南京 210094) 
关键词:非晶态 全固态锂电池 固态电解质 传导机理 
分类号:TM911
出版年,卷(期):页码:2019,47(10):0-0
DOI:
摘要:

 各向同性的非晶无机固态电解质具有机械性能好、安全性高、工作温度范围宽以及对金属锂稳定等优点,应用于全固态锂电池可使其具有超长的循环寿命,相对于晶态电解质具有不同的特点和优势,已经成为了固态电池领域的研究热点之一。然而离子电导率较低的缺点限制了其应用范围。介绍了非晶无机固态电解质的锂离子传输机制及导电特性、典型非晶电解质材料的研究进展以及非晶–结晶复合电解质的设计,并针对非晶无机固态电解质的产业化应用现状进行了总结,对未来非晶无机固态电解质的发展及应用前景进行了展望。

基金项目:
国家自然科学基金项目(51572129)。
作者简介:
参考文献:

 [1] NOTTER D A, MARCEL G, ROLF W, et al. Contribution of Li-ion batteries to the environmental impact of electric vehicles[J]. Environ Sci Technol, 2010, 44(17): 6550–6556.

[2] KIM J G, SON B, MUKHERJEE S, et al. A review of lithium and non-lithium based solid state batteries[J]. J Power Sources, 2015, 282: 299–322.
[3] XIA Q Y, SUN S, XIA, H, et al. Self-standing 3D cathodes for all-solid-state thin film lithium batteries with improved interface kinetics[J]. Small, 2018,14(52): 1804149.
[4] SUN S, XIA Q Y,XIA H,et al. Self-standing oxygen-deficient α-MoO3–x nanoflake arrays as 3D cathode for advanced all-solid-state thin film batteries[J]. J Materiomics, 2019, https://doi.org/10.1016/j.jmat.2019. 01.001.
[5] 夏求应, 孙硕, 夏晖, 等. 薄膜型全固态锂电池[J]. 储能科学与技术, 2018, 7(4): 565–574.
XIA Qiuying, SUN Shuo, XIA Hui, et al. Energ Stor Sci Technol (in Chinese), 2018, 7(4): 565–574.
[6] KNAUTH P. Inorganic solid Li ion conductors: An overview[J]. Solid State Ionics, 2009, 180(14): 911–916.
[7] ZHAO J, YANG X, YAO Y, et al. Moving to aqueous binder: A valid approach to achieving high-rate capability and long-term durability for sodium-ion battery[J]. Adv Sci, 2018, 5(4): 1700768.
[8] SVITAN’KO A I, NOVIKOVA S A, STENINA I A, et al. Microstructure and ion transport in Li1+xTi2−xMx(PO4)3 (M=Cr, Fe, Al) NASICON-type materials[J]. Inorgan Mater, 2014, 50(3): 273–279.
[9] YU S, SCHMIDT R D, MENDEZ R G, et al. Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO)[J]. Chem Mater, 2016, 28(1): 197–206.
[10] YU S, SIEGEL D J. Grain boundary contributions to Li-ion transport in the solid electrolyte Li7La3Zr2O12 (LLZO)[J]. Chem Mater, 2018, 29(22): 9639–9647.
[11] KOBAYASHI T, IMADE Y, SHISHIHARA D, et al. All solid-state battery with sulfur electrode and thio-LISICON electrolyte[J]. J Power Sources, 2008, 182(2): 621–625.
[12] 郑玥雷, 陈人杰, 吴峰, 等. 锂离子电池玻璃态电解质导电机理的研究进展[J]. 无机材料学报, 2013, 28(11): 1172–1180.
ZHENG Yuelei, CHEN Renjie, WU Feng, et al. J Inorg Mater (in Chinese), 2013, 28(11): 1172–1180.
[13] 郑洪河, 曲群婷, 石静, 等. 无机固体电解质用于锂及锂离子蓄电池的研究进展Ⅱ玻璃态锂无机固体电解质[J]. 电源技术, 2007, 31(12): 1015–1020.
ZHENG Honghe, QU Qunting, SHI Jing, et al. Power Source Technol (in Chinese), 2007, 31(12): 1015–1020.
[14] WANG B, BATES J B, LUCK C F, et al. Sputter deposition and characterization of lithium cobalt oxide thin films and their applications in thin-film rechargeable lithium batteries[J]. Office Sci Tech Inform Tech Rep, 1996, 10: 3203–3213.
[15] PUT B, VEREECKEN P M, MEERSSCHAUT J, et al. Electrical characterization of ultrathin RF-sputtered LiPON layers for nanoscale batteries[J]. ACS Appl Mater Interfaces, 2016, 8(11): 7060–7069.
[16] TENG L F, LIU P T, LO Y J, et al. Effects of microwave annealing on electrical enhancement of amorphous oxide semiconductor thin film transistor[J]. Appl Physl Lett, 2012, 101(13): 488.
[17] BATES J B, DUDNEY N J, GRUZALSKI G R, et al. Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries[J]. J Power Sources, 1993, 43(3): 103–110.
[18] BATES J B, DUDNEY N J, GRUZALSKI G R, et al. Electrical properties of amorphous lithium electrolyte thin films[J]. Solid State Ionics, 1992, 56(92): 647–654.
[19] BATES J B, GRUZALSKI G R, DUDNEY N J, et al. New amorphous thin-film lithium electrolyte and rechargeable microbattery[C]//35th International Power Sources Symposium, Cherry Hill, USA, 1992: 337–339.
[20] PATIL A, PATIL V, DONG W S, et al. Issue and challenges facing rechargeable thin film lithium batteries[J]. Mater Res Bull, 2008, 43(8): 1913–1942.
[21] XIONG Y, TAO H, ZHAO J, et al. Effects of annealing temperature on structure and opt-electric properties of ion-conducting LLTO thin films prepared by RF magnetron sputtering[J]. J Alloy Compd, 2011, 509(5): 1910–1914.
[22] LEE S J, BAE J H, LEE H W, et al. Electrical conductivity in Li–Si–P–O–N oxynitride thin-films[J]. J Power Sources, 2003, 123(1): 61–64.
[23] OUDENHOVEN J F M, BAGGETTO L, NOTTEN P H L. All-solid-state lithium-ion microbatteries: A review of various three-dimensional concepts[J]. Adv Energy Mater, 2011, 1(1): 10–33.
[24] LEE S J, BAIK H K, LEE S M. An all-solid-state thin film battery using LISIPON electrolyte and Si–V negative electrode films[J]. Electrochem Commun, 2003, 5(1): 32–35.
[25] KIM J M, PARK G B, LEE K C, et al. Li–B–O–N electrolytes for all-solid-state thin film batteries[J]. J Power Sources, 2009, 189(1): 211–216.
[26] YOON Y, SHINDO Y, KOGA H, et al. The mixed former effect in lithium borophosphate oxynitride thin film electrolytes for all-solid-state micro-batteries[J]. Electrochimi Acta, 2013, 111: 144–151.
[27] 吴勇民, 吴晓萌, 朱蕾, 等. 全固态薄膜锂电池研究进展[J]. 储能科学与技术, 2016, 5(5): 678–701.
WU Yongmin, WU Xiaomeng, ZHU Lei, et al. Energ Stor Sci Technol (in Chinese), 2016, 5(5): 678–701.
[28] KALITA D J, LEE S H, LEE K S, et al. Ionic conductivity properties of amorphous Li–La–Zr–O solid electrolyte for thin film batteries[J]. Solid State Ionics, 2012, 229(24): 14–19.
[29] NONG J, XU H R, YU Z Z, et al. Properties and preparation of Li–La–Ti–Zr–O thin film electrolyte[J]. Med Sci, 2015, 154: 167–169.
[30] LEE J Z, WANG Z Y, XIN H L et al. Amorphous lithium lanthanum titanate for solid-state microbatteries[J]. J Electrochem Soc, 2017, 164(1): 6268–6273.
[31] BRAGA M H, FERREIRA J A, STOCKHAUSEN V, et al. Novel Li3ClO based glasses with superionic properties for lithium batteries[J]. J Mater Chem A, 2014, 2(15): 5470–5480.
[32] BRAGA M H, ANDREW J M, FERREIRA J A et al. Glass-amorphous alkali-ion solid electrolytes and their performance in symmetrical cells[J]. Energy Environ Sci, 2016, 9: 948–954.
[33] KOTOBUKI M, KOISHI M. Preparation of Li1.5Al0.5Ti1.5 (PO4)3 solid electrolyte via a sol–gel route using various Al sources[J]. Ceram Int, 2013, 39(4): 4645–4649.
[34] EPP V, MA Q, HAMMER E M, et al. Very fast bulk Li ion diffusivity in crystalline Li1.5Al0.5Ti1.5(PO4)3 as seen using NMR relaxometry[J]. Phys Chem Chem Phys, 2015, 17(48): 32115–32121.
[35] FU J. Fast Li+ ion conducting glass–ceramics in the system Li2O–Al2O3–GeO2–P2O5[J]. Solid State Ionics, 1997, 104(3/4): 191–194.
[36] TAN G, WU F, LI L, et al. Magnetron sputtering preparation of nitrogen-incorporated lithium-aluminum-titanium-phosphate based thin film electrolytes for all-solid-state lithium ion batteries[J]. J Phys Chem C, 2012, 116(5): 3817–3826.
[37] SCHIRMEISEN A, TASKIRAN A, FUCHS H, et al. Fast interfacial ionic conduction in nanostructured glass ceramics[J]. Phys Rev Lett, 2007, 98(22): 225901.
[38] KANNO R, MARUYAMA M. Lithium ionic conductor thio-LISICON: The Li2S–GeS2–P2S5 system[J]. J Electrochem Soc, 2001, 148(7): A742–A746.
[39] TATSUMISAGO M, HAYASHI A. Sulfide glass–ceramic electrolytes for all-solid-state lithium and sodium batteries[J]. Int J Appl Glass Sci, 2014, 5(3): 226–235.
[40] TAKADA K. Progress in solid electrolytes toward realizing solid-state lithium batteries[J]. J Power Sources, 2018, 394: 74–85.
[41] MIZUNO F, HAYASHI A, TADANAGA K, et al. New, highly ion-conductive crystals precipitated from Li2S–P2S5 Glasses[J]. Adv Mater, 2005, 17(7): 918–921.
[42] HAYASHI A, HAMA S, MORIMOTO H, et al. Preparation of Li2S–P2S5 amorphous solid electrolytes by mechanical milling[J]. J Am Ceram Soc, 2001, 84(2): 477–79.
[43] TSUKASAKI H, MORI S, SHIOTANI S, et al. Ionic conductivity and crystallization process in the Li2S–P2S5 glass electrolyte[J]. Solid State Ionics, 2018, 317: 122–126.
[44] MIZUNO F, HAYASHI A, TADANAGA K, et al. Design of composite positive electrode in all-solid-state secondary batteries with Li2S–P2S5 glass–ceramic electrolytes[J]. J Power Sources, 2005, 146(1): 711–714.
[45] XU R C, XIA X H, YAO Z J, et al. Preparation of Li7P3S11 glass–ceramic electrolyte by dissolution-evaporation method for all-solid-state lithium ion batteries[J]. Electrochim Acta, 2016, 219: 235–240.
[46] GARCIA-MENDEZ R, MIZUNO F, ZHANG R, et al. Effect of processing conditions of 75Li2S–25P2S5 solid electrolyte on its DC electrochemical behavior[J]. Electrochim Acta, 2017, 237: 144–151.
[47] 许阳阳, 李全国, 梁成都, 等. 硫化物固体电解质的研究进展[J]. 储能科学与技术, 2016, 5(5): 649–658.
XU Yangyang, LI Quanguo, LIANG Chengdu, et al. Energ Stor Sci Technol (in Chinese), 2017, 237: 144–151.
[48] MERCIER R, MALUGANI J-P, FAHYS B, et al. Superionic conduction in Li2S–P2S5–LiI glasses[J]. Solid State Ionics, 1981, 5: 663–666.
[49] HAN F D, YUE J, ZHU X Y, et al. Suppressing Li dendrite formation in Li2S–P2S5 solid electrolyte by LiI incorporation[J]. Adv Energy Mater, 2018, 8(18): 1703644.
[50] YAMAUCHI A, SAKUDA A, HAYASHI A, et al. Preparation and ionic conductivities of (100−x)(0.75Li2S•0.25P2S5)•xLiBH4 glass electrolytes[J]. J Power Sources, 2013, 244: 707–710.
[51] MO S S, LU P H, DING F, et al. High-temperature performance of all-solid-state battery assembled with 95(0.7Li2S–0.3P2S5)-5Li3PO4 glass electrolyte[J]. Solid State Ionics, 2016, 296: 37–41.
[52] CENGIZ M. Lithium dentrite growth suppression and ionic conductivity of Li2S–P2S5–P2O5 glass solid electrolytes prepared by mechanical milling (dissertation). Colorado: University of Colorado Boulder, 2018.
[53] KATO A, NAGAO M, SAKUDA A, et al. Evaluation of Young’s modulus of Li2S–P2S5–P2O5 oxysulfide glass solid electrolytes[J]. J Ceram Soc Jpn, 2014, 122(1427): 552–555.
[54] FUKUSHIMA A, HAYASHI A, YAMAMURA H, et al. Mechanochemical synthesis of high lithium ion conducting solid electrolytes in a Li2S–P2S5–Li3N system[J]. Solid State Ionics, 2017, 304: 85–89.
[55] ZHANG Z, KENNEDY J H. Synthesis and characterization of the B2S3–Li2S, the P2S5–Li2S and the B2S3–P2S5–Li2S glass systems[J]. Solid State Ionics, 1990, 38(3): 217–224.
[56] OOURA Y, MACHIDA N, NAITO M, et al. Electrochemical properties of the amorphous solid electrolytes in the system Li2S–Al2S3–P2S5[J]. Solid State Ionics, 2012, 225: 350–353.
[57] NAGAMEDIANOVA Z, SáNCHEZ E. Electronic to ionic conductivity of glasses in the Li2S–Sb2S3–P2S5 system[J]. Solid State Ionics, 2006, 177(37): 3259–3265.
[58] YAMASHITA M, YAMANAKA H. Formation and ionic conductivity of Li2S–GeS2–Ga2S3 glasses and thin films[J]. Solid State Ionics, 2003, 158(1): 151–156.
[59] YAMAMOTO H, MACHIDA N, SHIGEMATSU T. A mixed-former effect on lithium-ion conductivities of the Li2S–GeS2–P2S5 amorphous materials prepared by a high-energy ball-milling process[J]. Solid State Ionics, 2004, 175(1/4): 707–711.
[60] MORIMOTO H, YAMASHITA H, TATSUMISAGO M, et al. Mechanochemical synthesis of new amorphous materials of 60Li2S•40SiS2 with high lithium ion conductivity[J]. J Am Ceram Soc, 1999, 82(5): 1352–1354.
[61] KOMIYA R, HAYASHI A, MORIMOTO H, et al. Solid state lithium secondary batteries using an amorphous solid electrolyte in the system (100–x)(0.6Li2S•0.4SiS2)•xLi4SiO4 obtained by mechanochemical synthesis[J]. Solid State Ionics, 2001, 140(1/2): 83–87.
[62] HAYASHI A, TATSUMISAGO M, MINAMI T. Electrochemical properties for the lithium ion conductive (100–x)(0.6Li2S•0.4 SiS2)• xLi4SiO4 oxysulfide glasses[J]. J Electrochem Soc, 1999, 146(9): 3472–3475.
[63] SAKAMOTO R, TATSUMISAGO M, MINAMI T. Preparation of fast lithium ion conducting glasses in the system Li2S−SiS2−Li3N[J]. J Phys Chem B, 1999, 103(20): 4029–4031.
[64] KENNEDY J H, YANG Y. Glass-forming region and structure in SiS2–Li2S–LiX (X=Br, I)[J]. J Solid State Chem, 1987, 69(2): 252–257.
[65] MINAMI T, HAYASHI A, TATSUMISAGO M. Recent progress of glass and glass–ceramics as solid electrolytes for lithium secondary batteries[J]. Solid State Ionics, 2006, 177(26/32): 2715–2720.
[66] CARETTE B, RIBES M, SOUQUET J L. The effects of mixed anions in ionic conductive glasses[J]. Solid State Ionics, 1983, 9/10: 735–737.
[67] KIM Y, SAIENGA J, MARTIN S W. Anomalous ionic conductivity increase in Li2S–GeS2–GeO2 Glasses[J]. J Phys Chem B, 2006, 110(33): 16318–16325.
[68] KIM Y, MARTIN S W. Ionic conductivities of various GeS2-based oxy-sulfide amorphous materials prepared by melt-quenching and mechanical milling methods[J]. Solid State Ionics, 2006, 177(33/34): 2881–2887.
[69] SEINO Y, TAKADA K, KIM B-C, et al. Synthesis and electrochemical properties of Li2S–B2S3–Li4SiO4[J]. Solid State Ionics, 2006, 177(26): 2601–2603.
[70] WADA H, MENETRIER M, LEVASSEUR A, et al. Preparation and ionic conductivity of new B2S3–Li2S–LiI glasses[J]. Mater Res Bull, 1983, 18(2): 189–193.
[71] YAMASHITA M, YAMANAKA H, Formation and ionic conductivity of Li2S–GeS2–Ga2S3 glasses and thin films[J]. Solid State Ionics, 2003, 158(1): 151–156.
[72] MAXWELL A T, M, BRUCE G. A, SANGAE K, et al. Fast Li-ion dynamics in stoichiometric Li2S–Ga2Se3–GeSe2 glasses[J]. Chem Mater, 2017, 29:8704–8710.
[73] MIZUNO F, HAYASHI A, TADANAGA K, et al. High lithium ion conducting glass–ceramics in the system Li2S–P2S5[J]. Solid State Ionics, 2006, 177(26): 2721–2725.
[74] TATSUMISAGO M, MIZUNO F, HAYASHI A. All-solid-state lithium secondary batteries using sulfide-based glass–ceramic electrolytes[J]. J Power Sources, 2006, 159(1): 193–199.
[75] ZHENG F, KOTOBUKI M, SONG S, et al. Review on solid electrolytes for all-solid-state lithium-ion batteries[J]. J Power Sources, 2018, 389: 198–213.
[76] HAYASHI A, HAMA S, MORIMOTO  H, et al. High lithium ion conductivity of glass–ceramics derived from mechanically milled glassy powders[J]. Chem Lett, 2001, 30(9): 872–873.
[77] HAYASHI A, HAMA S, MINAMI T, et al. Formation of superionic crystals from mechanically milled Li2S–P2S5 glasses[J]. Electrochem Commun, 2003, 5(2): 111–114.
[78] MURAMATSU H, HAYASHI A, OHTOMO T, et al. Structural change of Li2S–P2S5 sulfide solid electrolytes in the atmosphere[J]. Solid State Ionics, 2011, 182(1): 116–119.
[79] EOM M, CHOI S, SON S, et al. Enhancement of lithium ion conductivity by doping Li3BO3 in Li2S–P2S5 glass–ceramics electrolytes for all-solid-state batteries[J]. J Power Sources, 2016, 331: 26–31.
[80] ZHANG Y, CHEN R, LIU T, et al. High capacity, superior cyclic performances in all-solid-state lithium-ion batteries based on 78Li2S–22P2S5 glass–ceramic electrolytes prepared via simple heat treatment[J]. ACS Appl Mater Interfaces, 2017, 9(34): 28542–28548.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com