首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
硫化物固态电解质电化学稳定性研究进展
作者:刘丽露1  凡1 2 3  泓1 2 3 陈立泉1 2 3 
单位:(1. 天目湖先进储能技术研究院 江苏 溧阳 213300 2. 中国科学院物理研究所长三角研究中心 江苏 溧阳 213300 3. 中国科学院物理研究所清洁能源实验室 北京 100190) 
关键词:硫化物 固态电解质 电化学稳定性 全固态电池 
分类号:TU528
出版年,卷(期):页码:2019,47(10):0-0
DOI:
摘要:

 锂离子电池固态化在大幅提高安全性的同时可兼具高能量和高功率密度,在电动车、国防等领域具有重大的应用前景。在实现全固态锂电池的3种固态电解质体系中,硫化物固态电解质由于具有最高的离子电导率、较好的机械延展性以及与电极良好的界面接触等优点,成为最具潜力的技术方向。然而其空气稳定性和电化学稳定性较差,尤其是后者直接限制了其在高能量密度全固态锂电池中的应用。通过从实验及理论计算两方面总结归纳了迄今为止关于硫化物固态电解质电化学稳定性的研究进展,并对现有提升硫化物固态电解质电化学稳定性的实验思路和理论结果进行了总结。

基金项目:
国家重点研发计划(2016YFB0100100,2016YFA0202500),国家自然科学基金(51325206)。
作者简介:
参考文献:

 [1] 李泓, 许晓雄. 固态锂电池研发愿景和策略[J]. 储能科学与技术, 2016, 5(5): 607–614.

LI Hong, XU Xiaoxiong. Energ Stor Sci Technol (in Chinese), 2016, 5(5): 607–614.
[2] 张舒, 王少飞, 凌仕刚, 等. 锂离子电池基础科学问题(X)—全固态锂离子电池[J]. 储能科学与技术, 2014, 3(4): 376–394.
ZHANG Shu, WANG Shaofei, LING Shigang, et al. Energ Stor Sci Technol (in Chinese), 2014, 3(4): 376–394.
[3] 许晓雄, 邱志军, 官亦标, 等. 全固态锂电池技术的研究现状与展望[J]. 储能科学与技术, 2013, 2(4): 331–341.
XU Xiaoxiong, QIU Zhijun, GUAN Yibiao, et al. Energ Stor Sci Technol (in Chinese), 2013, 2(4): 331–341.
[4] 杜奥冰, 柴敬超, 张建军, 等. 锂电池用全固态聚合物电解质的研究进展[J]. 储能科学与技术, 2016, 5(5): 627–648.
DU Aobing, CHAI Jingchao, ZHANG Jianjun, et al. Energ Stor Sci Technol (in Chinese), 2016, 5(5): 627–648.
[5] MANTHIRAM A, YU X, WANG S. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nat Rew Mater, 2017, 2(3): 189–198.
[6] 许阳阳, 李全国, 梁成都, 等. 硫化物固体电解质的研究进展[J]. 储能科学与技术, 2016, 5(5): 649–658.
XU Yangyang, LI Quanguo, LIANG Chengdu, et al. Energ Stor Sci Technol (in Chinese), 2016, 5(5): 649–658.
[7] KANNO R, MURAYAMA M. Lithium ionic conductor thio-LISICON the Li2S–GeS2–P2S5 system[J]. J Electrochem Soc, 2001, 148(7): A742–A746.
[8] KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nat Mater, 2011, 10(9): 682–686.
[9] KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nat Energy, 2016, 1: 16030.
[10] LAU J, DEBLOCK R H, BUTTS D M, et al. Sulfide solid electrolytes for lithium battery applications[J]. Adv Energy Mater, 2018, 8(27): 1800933.
[11] TATSUMISAGO M, HAYASHI A. Superionic glasses and glass–ceramics in the Li2S–P2S5 system for all-solid-state lithium secondary batteries[J]. Solid State Ionics, 2012, 225: 342–345.
[12] YAMADA T, ITO S, OMODA R, et al. All solid-state lithium–sulfur battery using a glass-type P2S5–Li2S electrolyte: Benefits on anode kinetics[J]. J Electrochem Soc, 2015, 162(4): A646–A651.
[13] WADA H, MENETRIER M, LEVASSEUR A. Preparation and ionic conductivity of new B2S3–Li2S–LiI glasses[J]. Mater Res Bull, 1983, 18: 189–193.
[14] KENNEDY J H, SAHAMI S, SHEA S W. Preparation and conductivity measurements of SiS2–Li2S glasses doped with LiBr and LiCI[J]. Solid State Ionics, 1986, 18: 368–371.
[15] KENNEDY J H, ZHANG Z. Improved stability for the SiS2–P2S5–Li2S–LiI glass system[J]. Solid State Ionics, 1988, 28–30: 726–728.
[16] TAKADA K, INADA T, KAJIYAMA A, et al. Solid-state lithium battery with graphite anode[J]. Solid State Ionics, 2003, 158(3/4): 269–274.
[17] HIRAI K, TATSUMISAGO M, MINAMI T. Thermal and electrical properties of rapidly quenched glasses in the systems Li2S–SiS2–LixMOy (LixMOy=Li4SiO4, Li2SO4)[J]. Solid State Ionics, 1995, 78(3): 269–273.
[18] KONDO S, TAKADA K, YAMAMURA Y. New lithium ion conductors based on Li2S–SiS2 system[J]. Solid State Ionics, 1992, 53/56: 1183–1186.
[19] TAKADA K, AOTANI N, IWAMOTO K, et al. Solid state lithium battery with oxysulfide glass[J]. Solid State Ionics, 1996, 86/88: 877–882.
[20] MIZUNO F, HAYASHI A, TADANAGA K, et al. High lithium ion conducting glass–ceramics in the system Li2S–P2S5[J]. Solid State Ionics, 2006, 177(26): 2721–2725.
[21] TATSUMISAGO M, MIZUNO F, HAYASHI A. All-solid-state lithium secondary batteries using sulfide-based glass–ceramic electrolytes[J]. J Power Sources, 2006, 159(1): 193–199.
[22] MIZUNO F, HAYASHI A, TADANAGA K, et al. New, highly ion-conductive crystals precipitated from Li2S–P2S5 glasses[J]. Adv Mater, 2005, 17(7): 918–921.
[23] TREVEY J, JANG J S, JUNG Y S, et al. Glass–ceramic Li2S–P2S5 electrolytes prepared by a single step ball billing process and their application for all-solid-state lithium–ion batteries[J]. Electrochem Commun, 2009, 11(9): 1830–1833.
[24] LIU Z Q, TANG Y F, WANG Y M, et al. High performance Li2SeP2S5 solid electrolyte induced by selenide[J]. J Power Sources, 2014, 260: 264–267.
[25] SHIN B R, NAM Y J, OH D Y, et al. Comparative study of TiS2/Li–In all-solid-state lithium batteries using glass–ceramic Li3PS4 and Li10GeP2S12 solid electrolytes[J]. Electrochim Acta, 2014, 146: 395–402.
[26] HOLZMANN T, SCHOOP L M, ALI M N, et al. Li0.6[Li0.2Sn0.8S2]——A layered lithium superionic conductor[J]. Energy Environ Sci, 2016, 9(8): 2473–2668.
[27] KUHN A, HOLZMANN T, NUSS J, et al. A Facile wet chemistry approach towards unilamellar tin sulfide nanosheets from Li4xSn1−xS2 solid solutions[J]. J Mater Chem A, 2014, 2(17): 6100–6106.
[28] MURAYAMA M, SONOYAMA N, YAMADA A, et al. Material design of new lithium ionic conductor, thio-LISICON, in the Li2S–P2S5 system[J]. Solid State Ionics, 2004, 170(3/4): 173–180.
[29] MURAYAMA M. Synthesis of new lithium ionic conductor thio-LISICON——Lithium silicon sulfides system[J]. J Solid State Chem, 2002, 168(1): 140–148.
[30] ADAMS S, RAO R P. Structural requirements for fast lithium ion migration in Li10GeP2S12[J]. J Mater Chem, 2012, 22(16): 7687–7691.
[31] HORI S, SUZUKI K, HIRAYAMA M, et al. Synthesis, structure, and ionic conductivity of solid solution, Li10+δM1+δP2−δS12 (M=Si, Sn)[J]. Faraday Discuss, 2014, 176: 83–94.
[32] KUHN A, GERBIG O, ZHU C, et al. A new ultrafast superionic Li-conductor: Ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes[J]. Phys Chem Chem Phys, 2014, 16(28): 14669–14674.
[33] HORI S, KATO M, SUZUKI K, et al. Phase diagram of the Li4GeS4-Li3PS4 quasi-binary system containing the superionic conductor Li10GeP2S12[J]. J Am Ceram Soc, 2015, 98(10): 3352–3360.
[34] KWON O, HIRAYAMA M, SUZUKI K, et al. Synthesis, structure, and conduction mechanism of the lithium superionic conductor Li10+δGe1+δP2−δS12[J]. J Mater Chem A, 2015, 3(1): 438–446.
[35] YANG K, DONG J, ZHANG L, et al. Dual doping: An effective method to enhance the electrochemical properties of Li10GeP2S12-based solid electrolytes[J]. J Am Ceram Soc, 2015, 98(12): 3831–3835.
[36] HORI S, SUZUKI K, HIRAYAMA M, et al. Lithium superionic conductor Li9.42Si1.02P2.1S9.96O2.04 with Li10GeP2S12-type structure in the Li2S–P2S5–SiO2 pseudoternary system: Synthesis, electrochemical properties, and structure–composition relationships[J]. Front Energy Res, 2016, 4: 38.
[37] SUN Y, SUZUKI K, HARA K, et al. Oxygen substitution effects in Li10GeP2S12 solid electrolyte[J]. J Power Sources, 2016, 324: 798–803.
[38] SUZUKI K, SAKUMA M, HORI S, et al. Synthesis, structure, and electrochemical properties of crystalline Li–P–S–O solid electrolytes: Novel lithium-conducting oxysulfides of Li10GeP2S12 family[J]. Solid State Ionics, 2016, 288: 229–234.
[39] WEBER D A, SENYSHYN A, WELDERT K S, et al. Structural insights and 3D diffusion pathways within the lithium superionic conductor Li10GeP2S12[J]. Chem Mater, 2016, 28(16): 5905–5915.
[40] ZHOU P, WANG J, CHENG F, et al. A solid lithium superionic conductor Li11AlP2S12 with a thio-LISICON analogous structure[J]. Chem Commun (Camb), 2016, 52(36): 6091–6094.
[41] SUN Y, SUZUKI K, HORI S, et al. Superionic conductors: Li10+δ[SnySi1–y]1+δP2−δS12 with a Li10GeP2S12-type structure in the Li3PS4–Li4SnS4–Li4SiS4 quasi-ternary system[J]. Chem Mater, 2017, 29(14): 5858–5864.
[42] HARM S, HATZ A K, MOUDRAKOVSKI I, et al. Lesson learned from NMR: Characterization and ionic conductivity of LGPS-like Li7SiPS8[J]. Chem Mater, 2019, 31(4): 1280–1288.
[43] ONG S P, MO Y, RICHARDS W D, et al. Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12 (M= Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors[J]. Energy Environ Sci, 2013, 6(1): 148–156.
[44] HAN F, GAO T, ZHU Y, et al. A battery made from a single material[J]. Adv Mater, 2015, 27(23): 3473–3483.
[45] RICHARDS W D, MIARA L J, WANG Y, et al. Interface stability in solid-state batteries[J]. Chem Mater, 2015, 28(1): 266–273.
[46] SHIN B R, NAM Y J, OH D Y, et al. Comparative study of TiS2/Li-In all-solid-state lithium batteries using glass–ceramic Li3PS4 and Li10GeP2S12 solid electrolytes[J]. Electrochim Acta, 2014, 146: 395–402.
[47] HAN F, ZHU Y, HE X, et al. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes[J]. Adv Energy Mater, 2016, 6(8): 1501590.
[48] DEISEROTH H J, KONG S T, ECKERT H, et al. Li6PS5X: A class of crystalline Li-rich solids with an unusually high Li+ mobility[J]. Angew Chem Int Ed Engl, 2008, 47(4): 755–758.
[49] CHEN M, ADAMS S. High performance all-solid-state lithium/sulfur batteries using lithium argyrodite electrolyte[J]. J Solid State Electrochem, 2014, 19(3): 697–702.
[50] CHEN M, PRASADA RAO R, ADAMS S. The unusual role of Li6PS5Br in all-solid-state CuS/Li6PS5Br/In–Li batteries[J]. Solid State Ionics, 2014, 268: 300–304.
[51] YU C, VAN EIJCK L, GANAPATHY S, et al. Synthesis, structure and electrochemical performance of the argyrodite Li6PS5Cl solid electrolyte for Li-ion solid state batteries[J]. Electrochim Acta, 2016, 215: 93–99.
[52] CHIDA S, MIURA A, ROSERO-NAVARRO N C, et al. Liquid-phase synthesis of Li6PS5Br using ultrasonication and application to cathode composite electrodes in all-solid-state batteries[J]. Ceram Int, 2018, 44(1): 742–746.
[53] YU C, GANAPATHY S, HAGEMAN J, et al. Facile synthesis towards the optimal structure-conductivity characteristics of the argyrodite Li6PS5Cl solid state electrolyte[J]. ACS Appl Mater Interfaces, 2018, 10(39): 33296–33306.
[54] BOULINEAU S, COURTY M, TARASCON J M, et al. Mechanochemical synthesis of Li-argyrodite Li6PS5X (X=Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application[J]. Solid State Ionics, 2012, 221: 1–5.
[55] MO Y, ONG S P, CEDER G. First principles study of the Li10GeP2S12 lithium super ionic conductor material[J]. Chem Mater, 2012, 24(1): 15–17.
[56] ZHU Y, HE X, MO Y. Origin of outstanding stability in the lithium solid electrolyte materials: Insights from thermodynamic analyses based on first-principles calculations[J]. ACS Appl Mater Interfaces, 2015, 7(42): 23685–23693.
[57] ZHU Y, HE X, MO Y. First Principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries[J]. J Mater Chem A, 2016, 4(9): 3253–3266.
[58] SCHWÖBEL A, HAUSBRAND R, JAEGERMANN W. Interface reactions between LiPON and lithium studied by in-situ X-ray photoemission[J]. Solid State Ionics, 2015, 273: 51–54.
[59] LIU Z, FU W, PAYZANT E A, et al. Anomalous high ionic conductivity of nanoporous beta-Li3PS4[J]. J Am Chem Soc, 2013, 135(3): 975–978. 
[60] RANGASAMY E, LIU Z, GOBET M, et al. An iodide-based Li7P2S8I superionic conductor[J]. J Am Chem Soc, 2015, 137(4): 1384–1387.
[61] LEPLEY N D, HOLZWARTH N A W, DU Y A. Structures, Li+ mobilities, and interfacial properties of solid electrolytes Li3PS4 and Li3PO4 from first principles[J]. Phys Rev B, 2013, 88(10): 104103.
[62] SAKUDA A, HAYASHI A, TATSUMISAGO M. Interfacial observation between LiCoO2 electrode and Li2S−P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy[J]. Chem Mater, 2010, 22(3): 949–956.
[63] KATO T, HAMANAKA T, YAMAMOTO K, et al. In-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid-state battery[J]. J Power Sources, 2014, 260: 292–298.
[64] KIM K H, IRIYAMA Y, YAMAMOTO K, et al. Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery[J]. J Power Sources, 2011, 196(2): 764–767.
[65] TAKADA K, OHTA N, ZHANG L, et al. Interfacial modification for high-power solid-state lithium batteries[J]. Solid State Ionics, 2008, 179(27/32): 1333–1337.
[66] FITZHUGH W, WU F, WENYE D, et al. A high-throughput search for functionally stable interfaces in sulfide solid-state lithium ion conductors[J]. Adv Energy Mater, 2019, in press.
[67] ONG S P, ANDREUSSI O, WU F, et al. Electrochemical windows of room-temperature ionic liquids from molecular dynamics and density functional theory calculations[J]. Chem Mater, 2011, 23: 2979–2986. 
[68] WU F, FITZHUGH W, YE L, et al. Advanced sulfide solid electrolyte by core–shell structural design[J]. Nat Commun, 2018, 9(1): 4037.
[69] CAO J, CHEN C, ZHAO Q, et al. A flexible nanostructured paper of a reduced graphene oxide–sulfur composite for high-performance lithium–sulfur batteries with unconventional configurations[J]. Adv Mater, 2016, 28: 9629–9636.
[70] ZHANG L, CHEN X, WAN F, et al. Enhanced electrochemical kinetics and polysulfide traps of indium nitride for highly stable lithium–sulfur batteries[J]. ACS Nano, 2018, 12: 9578–9586.
[71] YAO M, WANG R, ZHAO Z, et al. A flexible all-in-one lithium–sulfur battery[J]. ACS Nano, 2018, 12: 12503–12511.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com