首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
薄膜材料在柔性锂离子电池中的应用
作者: 星1 陈人杰1 2  锋1 2 
单位:(1. 北京理工大学材料学院 环境科学与工程北京市重点实验室 北京 100081  2. 国家高技术绿色材料发展中心 北京 100081) 
关键词:锂离子电池 薄膜材料 柔性 三维结构 
分类号:TM911
出版年,卷(期):页码:2019,47(10):0-0
DOI:
摘要:

 自20世纪90年代至今,随着能量密度的不断提升,锂离子电池应用领域从消费电子市场扩展到动力和储能市场。目前亟待开发新材料、新体系来满足市场需求,与此同时,柔性电子器件的繁荣发展需要锂离子电池具有柔性。基于电池的不同组成部件,综述薄膜材料在柔性锂离子电池中的应用,在实现柔性的同时实现微型化,并着重阐述了柔性三维薄膜电极的构建。

 
基金项目:
国家重点研发计划项目(2016YFB0100204)。
作者简介:
参考文献:

 [1] LIN Z, LIU T, AI X, et al. Aligning academia and industry for unified battery performance metrics [J]. Nat Commun, 2018, 9(1): 5262.

[2] LIU W, SONG M S, KONG B, et al. Flexible and stretchable energy storage: Recent advances and future perspectives[J]. Adv Mater, 2017, 29(1): 1603436
[3] LIU Y, PHARR M, SALVATORE G A. Lab-on-skin: A review of flexible and stretchable electronics for wearable health monitoring[J]. ACS Nano, 2017, 11(10): 9614–9635.
[4] CHA H, KIM J, LEE Y, et al. Issues and challenges facing flexible lithium-ion batteries for practical application[J]. Small, 2018, 14(43): 1702989.
[5] SEPULVEDA A, SPEULMANNS J, VEREECKEN P M. Bending impact on the performance of a flexible Li4Ti5O12-based all-solid-state thin-film battery[J]. Sci Technol Adv Mater, 2018, 19(1): 454–464.
[6] CHOI K-H, AHN D B, LEE S-Y. Current status and challenges in printed batteries: Toward form factor-free, monolithic integrated power sources[J]. ACS Energ Lett, 2018, 3(1): 220–236.
[7] HE L, WEN K, ZHANG Z, et al. Advanced materials for flexible electrochemical energy storage devices[J]. J Mater Res, 2018, 33(16): 2281–2296.
[8] TAO T, LU S, CHEN Y. A review of advanced flexible lithium-ion batteries[J]. Adv Mater Technol, 2018, 3(9): 1700375.
[9] HARRIS K D, ELIAS A L, Chung H J. Flexible electronics under strain: A review of mechanical characterization and durability enhancement strategies[J]. J Mater Sci, 2016, 51(6): 2771–2805.
[10] CHENG X, PAN J, ZHAO Y, et al. Gel polymer electrolytes for electrochemical energy storage[J]. Adv Energ Mater, 2018, 8(7): 1702184.
[11] YUN J H, HAN G-B, LEE Y M, et al. Low resistance flexible current collector for lithium secondary battery[J]. Electrochem Solid-State Lett, 2011, 14(8): A116.
[12] CHOI J-Y, LEE D J, LEE Y M, et al. Silicon nanofibrils on a flexible current collector for bendable lithium-ion battery anodes[J]. Adv Funct Mater, 2013, 23(17): 2108–2114.
[13] WU H R, SUSANTO A, LIAN K. Thin and flexible Ni-P based current collectors developed by electroless deposition for energy storage devices[J]. Appl Surf Sci, 2017, 394: 63–69.
[14] CHEN R J, QU W J, GUO X, et al. The pursuit of solid-state electrolytes for lithium batteries: From comprehensive insight to emerging horizons[J]. Mater Horiz, 2016, 3(6): 487–516.
[15] 陈龙, 池上森, 董源, 等. 全固态锂电池关键材料—固态电解质研究进展[J]. 硅酸盐学报, 2018, 46(1): 21–34.
CHEN Long, CHI Shangseng, DONG Yuan, et al. J Chin Ceram Soc, 2018, 46(1): 21–34.
[16] 陈凯, 程丽乾. 体型无机全固态锂离子电池研究进展[J]. 硅酸盐学报, 2017, 45(6): 785–792.
CHEN Kai, CHENG Liqian. J Chin Ceram Soc, 2017, 45(6): 785–792.
[17] KOO M, PARK K-I, LEE S H, et al. Bendable inorganic thin-film battery for fully flexible electronic systems[J]. Nano Lett, 2012, 12(9): 4810–4816.
[18] LEE S H, LIU P, Tracy C E, et al. All-solid-state rocking chair lithium battery on a flexible Al substrate[J]. Electrochem Solid-State Lett, 1999, 2(9): 425–427.
[19] GLENNEBERG J, ANDRE F, BARDENHAGEN I, et al. A concept for direct deposition of thin film batteries on flexible polymer substrate[J]. J Power Sources, 2016, 324: 722–728.
[20] LEE H, KIM S, KIM K B, et al. Scalable fabrication of flexible thin-film batteries for smart lens applications[J]. Nano Energy, 2018, 53: 225–231.
[21] LUO X Y, LANG J L, LV S S, et al. High performance sandwich structured Si thin film anodes with LiPON coating[J]. Front Mater Sci, 2018, 12(2): 147–155.
[22] IHLEFELD J F, CLEM P G, DOYLE B L, et al. Fast lithium-ion conducting thin-film electrolytes integrated directly on flexible substrates for high-power solid-state batteries[J]. Adv Mater, 2011, 23: 5663–5667.
[23] AETUKURI N B, KITAJIMA S, JUNG E, et al. Flexible ion-conducting composite membranes for lithium batteries[J]. Adv Energy Mater, 2015, 5(14): 1500265.
[24] HOUNG B, HUNG M T, CHIN Y H. Property study of flexible lithium ion conducting thin films prepared by the RF magnetron sputtering method[J]. J Non-Cryst Solids, 2013, 363: 167–171.
[25] NAM Y J, CHO S-J, OH D Y, et al. Bendable and thin sulfide solid electrolyte film: A new electrolyte opportunity for free-standing and stackable high-energy all-solid-state lithium-ion batteries[J]. Nano Lett, 2015, 15(5): 3317–3323.
[26] TAN G, WU F, LI L, et al. Magnetron sputtering preparation of nitrogen-incorporated lithium–aluminum–titanium phosphate based thin film electrolytes for all-solid-state lithium ion batteries[J]. J Phys Chem C, 2012, 116(5): 3817–3826.
[27] TAN G Q, WU F, ZHAN C, et al. Solid-state Li-ion batteries using fast, stable, glassy nanocomposite electrolytes for good safety and long cycle-life[J]. Nano Lett, 2016, 16(3): 1960–1968.
[28] KAMMOUN M, BERG S, ARDEBILI H. Flexible thin-film battery based on graphene-oxide embedded in solid polymer electrolyte[J]. Nanoscale, 2015, 7(41): 17516–17522.
[29] SAUNIER J, ALLOIN F, SANCHEZ J-Y, et al. Thin and flexible lithium-ion batteries: Investigation of polymer electrolytes[J]. J Power Sources, 2003, 119: 454–459.
[30] LI Q, ARDEBILI H. Flexible thin-film battery based on solid-like ionic liquid-polymer electrolyte[J]. J Power Sources, 2016, 303: 17–21.
[31] HOWLETT P C, PONZIO F, FANG J, et al. Thin and flexible solid-state organic ionic plastic crystal–polymer nanofibre composite electrolytes for device applications[J]. Phys Chem Chem Phys, 2013, 15(33): 13784–13789.
[32] TAN G Q, BAO W, YUAN Y F, et al. Freestanding highly defect nitrogen-enriched carbon nanofibers for lithium ion battery thin-film anodes[J]. J Mater Chem A, 2017, 5(11): 5532–5540.
[33] SHEN L, DING B, NIE P, et al. Advanced energy-storage architectures composed of spinel lithium metal oxide nanocrystal on carbon textiles[J]. Adv Energy Mater, 2013, 3(11): 1484–1489.
[34] TAN G, WU F, LU J, et al. Controllable crystalline preferred orientation in Li-Co-Ni-Mn oxide cathode thin films for all-solid-state lithium batteries[J]. Nanoscale, 2014, 6(18): 10611–10622.
[35] LIU P, ZHENG J, QIAO Y, et al. Fabrication and characterization of porous Si-Al films anode with different macroporous substrates for lithium-ion batteries[J]. J Solid State Electrochem, 2014, 18(7): 1799–1806.
[36] SONG S, KIM S W, LEE D J, et al. Flexible binder-free metal fibril mat-supported silicon anode for high-performance lithium-ion batteries[J]. ACS Appl Mater Interfaces, 2014, 6(14): 11544–9.
[37] MIAO D, HU H, LI A, et al. Fabrication of porous and amorphous TiO2 thin films on flexible textile substrates[J]. Ceram Int, 2015, 41(7): 9177–9182.
[38] XIA H, XIA Q Y, LIN B H, et al. Self-standing porous LiMn2O4 nanowall arrays as promising cathodes for advanced 3D microbatteries and flexible lithium-ion batteries[J]. Nano Energy, 2016, 22: 475–482.
[39] DENG Z N, JIANG H, HU Y J, et al. 3D ordered macroporous MoS2@C nanostructure for flexible Li-ion batteries[J]. Adv Mater, 2017, 29(10): 1603020.
[40] STEWART D M, PEARSE A J, KIM N S, et al. Tin oxynitride anodes by atomic layer deposition for solid-state batteries[J]. Chem Mater, 2018, 30(8): 2526–2534.
[41] MENG X B, YANG X Q, SUN X L. Emerging applications of atomic layer deposition for lithium-ion battery studies[J]. Adv Mater, 2012, 24(27): 3589–3615.
[42] GOCKELN M, GLENNEBERG J, BUSSE M, et al. Flame aerosol deposited Li4Ti5O12 layers for flexible, thin film all-solid-state Li-ion batteries[J]. Nano Energy, 2018, 49: 564–573.
[43] LIU Y T, ZHU X D, DUAN Z Q, et al. Flexible and robust MoS2-graphene hybrid paper cross-linked by a polymer ligand: A high-performance anode material for thin film lithium-ion batteries[J]. Chem Commun, 2013, 49(87): 10305–10307.
[44] WANG F, LI C, ZHONG J, et al. A flexible core-shell carbon layer MnO nanofiber thin film via host-guest interaction: Construction, characterization, and electrochemical performances[J]. Carbon, 2018, 128:277–286.
[45] WANG F, CAI J X, YU J, et al. Simultaneous electrospinning and electrospraying: Fabrication of a carbon nanofibre/MnO/reduced graphene oxide thin film as a high-performance anode for lithium-ion batteries[J]. Chemelectrochem, 2018, 5(1): 51–61.
[46] LONG J W, DUNN B, ROLISON D R, et al. Three-dimensional battery architectures[J]. Chem Rev, 2004, 104(10): 4463–4492.
[47] HE Y, MATTHEWS B, WANG J, et al. Innovation and challenges in materials design for flexible rechargeable batteries: From 1D to 3D[J]. J Mater Chem A, 2018, 6(3): 735–753.
[48] LIN R X, ZHANG S C, REN Y B, et al. Cu@Sn nanostructures based on light-weight current collectors for superior reversible lithium ion storage[J]. RSC Adv, 2016, 6(24): 20042–20050.
[49] CAO F F, DENG J W, XIN S, et al. Cu-Si nanocable arrays as high-rate anode materials for lithium-ion batteries[J]. Adv Mater, 2011, 23(38): 4415–20.
[50] TAN G Q, WU F, YUAN Y F, et al. Freestanding three-dimensional core-shell nanoarrays for lithium-ion battery anodes[J]. Nat Commun, 2016, 7: 11774.
[51] PARK M H, NOH M, LEE S, et al. Flexible high-energy Li-ion batteries with fast-charging capability[J]. Nano Lett, 2014, 14(7): 4083–4089.
[52] WANG N, HANG T, LING H, et al. High-performance Si-based 3D Cu nanostructured electrode assembly for rechargeable lithium batteries[J]. J Mater Chem A, 2015, 3(22): 11912–11919.
[53] HOU C, LANG X Y, HAN G F, et al. Integrated solid/nanoporous copper/oxide hybrid bulk electrodes for high-performance lithium-ion batteries[J]. Sci Rep, 2013, 3: 2878.
[54] GONZALEZ A F, YANG N H, LIU R S. Silicon anode design for lithium-ion batteries: Progress and perspectives[J]. J Phys Chem C, 2017, 121(50): 27775–27787.
[55] FENG K, LI M, LIU W W, et al. Silicon-based anodes for lithium-ion batteries: From fundamentals to practical applications[J]. Small, 2018, 14(8): 1702737.
[56] SHEN T, YAO Z J, XIA X H, et al. Rationally designed silicon nanostructures as anode material for lithium-ion batteries[J]. Adv Eng Mater, 2018, 20(1): 1700591.
[57] KIM S W, YUN J H, SON B, et al. Graphite/silicon hybrid electrodes using a 3D current collector for flexible batteries[J]. Adv Mater, 2014, 26(19): 2977–2982.
[58] PERL A, REINHOUDT D N, HUSKENS J. Microcontact printing: Limitations and achievements[J]. Adv Mater, 2009, 21(22): 2257–2268.
[59] MAO Y Y, LI G R, GUO Y, et al. Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium-sulfur batteries[J]. Nat Commun, 2017, 8: 14628.
 
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com