首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
第一性原理计算在固态电解质研究中的应用
作者:赵旭东 范丽珍 
单位:(北京科技大学新材料技术研究院 北京 100083) 
关键词:第一性原理计算 密度泛函理论 全固态锂电池 固态电解质材料 
分类号:O646; TM911
出版年,卷(期):页码:2019,47(10):0-0
DOI:
摘要:

 锂离子电池具有比能量高、工作电压高、循环寿命长、工作温度范围宽等优点,是目前使用最广泛的移动能源存储装置。使用固态陶瓷材料替换传统的液态有机电解质可以提高锂电池的安全性能。对固态电解质材料进行设计与研究,有助于推动全固态锂电池技术的发展。应用第一性原理计算可以方便地获知材料的微观晶体结构、基态能量、物理化学性质等信息,在固态电解质材料研究领域获得了广泛的应用。对第一性原理计算模拟在锂离子电导率、材料热力学稳定性、动力学稳定性、电化学稳定性方面的应用进行了介绍,对计算模拟今后的重点突破方向做了展望。

基金项目:
中央高校基本科研业务费(FRF-TP-18-091A1)。
作者简介:
参考文献:

 [1] ETACHERI V, MAROM R, ELAZARI R, et al. Challenges in the development of advanced Li-ion batteries: A review[J]. Energy Environ Sci, 2011, 4(9): 3243–3262.

[2] GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: A perspective[J]. J Am Chem Soc, 2013, 135(4): 1167–1176.
[3] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359–367.
[4] YANG Z, ZHANG J, KINTNER-MEYER M C, et al. Electrochemical energy storage for green grid[J]. Chem Rev, 2011, 111(5): 3577–3613.
[5] GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chem Mater, 2010, 22(3): 587–603.
[6] NISHI Y. Lithium ion secondary batteries; past 10 years and the future[J]. J Power Sources, 2001, 100(1/2): 101–106.
[7] CHEN Y, RANGASAMY E, LIANG C, et al. Origin of high Li+ conduction in doped Li7La3Zr2O12 garnets[J]. Chem Mater, 2015, 27(16): 5491–5494.
[8] ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652–657.
[9] LI W, DAHN J R, WAINWRIGHT D S. Rechargeable lithium batteries with aqueous electrolytes[J]. Science, 1994, 264(5162): 1115–1118.
[10] KNAUTH P. Inorganic solid Li ion conductors: An overview[J]. Solid State Ionics, 2009, 180(14/15/16): 911–916.
[11] TAKADA K. Progress and prospective of solid-state lithium batteries[J]. Acta Mater, 2013, 61(3): 759–770.
[12] 池上森. 锂/钠电池负极材料及固态电池界面的研究[D]. 北京: 北京科技大学, 2018.
CHI Shangsen. Research on lithium/sodium battery anode materials and solid-state battery interface (in Chinese, dissertation). Beijing: University of Science and Technology Beijing, 2018.
[13] JANEK J, ZEIER W G. A solid future for battery development[J]. Energy, 2016, 500(400): 300.
[14] HU Y-S. Batteries: Getting solid[J]. Nat Energy, 2016, 1(4): 16042.
[15] CHEN R, QU W, GUO X, et al. The pursuit of solid-state electrolytes for lithium batteries: From comprehensive insight to emerging horizons[J]. Mater Horizons, 2016, 3(6): 487–516.
[16] BATES J. Thin-film lithium and lithium-ion batteries[J]. Solid State Ionics., 2000, 135(1/2/3/4): 33–45.
[17] VARZI A, RACCICHINI R, PASSERINI S, et al. Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries[J]. J Mater Chem A, 2016, 4(44): 17251–17259.
[18] HONG Y P. Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors[J]. Mater Res Bull, 1978, 13(2): 117–124.
[19] BOUCHET R, MARIA S, MEZIANE R, et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries[J]. Nat Mater, 2013, 12(5): 452–457.
[20] FENG J K, LU L, LAI M O. Lithium storage capability of lithium ion conductor Li1.5Al0.5Ge1.5(PO4)3[J]. J Alloy Compd, 2010, 501(2): 255–258.
[21] JUNG Y S, OH D Y, NAM Y J, et al. Issues and challenges for bulk-type all-solid-state rechargeable lithium batteries using sulfide solid electrolytes[J]. Israel J Chem, 2015, 55(5): 472–485.
[22] KRESSE G, HAFNER J. Ab initiomolecular dynamics for liquid metals[J]. Phys Rev B, 1993, 47(1): 558–561.
[23] KRESSE G, FURTHMüLLER J. Efficient iterative schemes for ab-initio total-energy calculations using a plane-wave basis set[J]. Phys Rev B, 1996, 54(16): 11169–1186.
[24] KRESSE G, FURTHMüLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput Mater Sci, 1996, 6(1): 15–50.
[25] SEGALL M, LINDAN P J, PROBERT M A, et al. First-principles simulation: Ideas, illustrations and the CASTEP code[J]. J Phys-Condes Mater, 2002, 14(11): 2717.
[26] DELLEY B. An all-electron numerical method for solving the local density functional for polyatomic molecules[J]. J Chem Phys, 1990, 92(1): 508–517.
[27] DELLEY B. From molecules to solids with the DMol3 approach[J]. J Chem Phys, 2000, 113(18): 7756–7764.
[28] FRISCH M, TRUCKS G, SCHLEGEL H B, et al. Gaussian 09, revision D. 01[M]. Wallingford: Gaussian Inc., 2009.
[29] ORDEJÓN P, ARTACHO E, SOLER J M. Self-consistent order-N density-functional calculations for very large systems[J]. Phys Rev B, 1996, 53(16): R10441.
[30] SOLER J M, ARTACHO E, GALE J D, et al. The SIESTA method for ab initio order-N materials simulation[J]. J Phys-Condes Mater, 2002, 14(11): 2745.
[31] 肖睿娟, 李泓, 陈立泉. 基于材料基因组方法的锂电池新材料开 发[J]. 物理学报, 2018, 67(12): 291–9.
XIAO Ruijuan, LI Hong, CHEN Liquan, Acta Phys Sin (in Chinese), 2018, 67(12): 291–299.
[32] NOLAN A M, ZHU Y, HE X, et al. Computation-accelerated design of materials and interfaces for all-solid-state lithium-ion batteries[J]. Joule, 2018, 2(10): 2016–2046.
[33] JAIN A, ONG S P, HAUTIER G, et al. Commentary: The materials project: A materials genome approach to accelerating materials innovation[J]. Apl Mater, 2013, 1(1): 011002.
[34] ONG S P, RICHARDS W D, JAIN A, et al. Python materials genomics (pymatgen): A robust, open-source python library for materials analysis[J]. Comput Mater Sci, 2013, 68: 314–319.
[35] ONG S P, WANG L, KANG B, et al. Li−Fe−P−O2 phase diagram from first principles calculations[J]. Chem Mat, 2008, 20(5): 1798–1807.
[36] SUN W, DACEK S T, ONG S P, et al. The thermodynamic scale of inorganic crystalline metastability[J]. Sci Adv, 2016, 2(11): e1600225.
[37] WANG Y, RICHARDS W D, BO S-H, et al. Computational prediction and evaluation of solid-state sodium superionic conductors Na7P3X11 (X=O, S, Se)[J]. Chem. Mater, 2017, 29(17): 7475–7482.
[38] KANG S, MO Y, ONG S P, et al. Nanoscale stabilization of sodium oxides: implications for Na–O2 batteries[J]. Nano Lett, 2014, 14(2): 1016–1020.
[39] TOGO A, TANAKA I. First principles phonon calculations in materials science[J]. Scripta Mater, 2015, 108: 1–5.
[40] ONG S P, MO Y, RICHARDS W D, et al. Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12(M=Ge, Si, Sn, Al or P, and X=O, S or Se) family of superionic conductors[J]. Energy Environ Sci, 2013, 6(1): 148–156.
[41] ZHU Y, HE X, MO Y. Origin of outstanding stability in the lithium solid electrolyte materials: Insights from thermodynamic analyses based on first-principles calculations[J]. ACS Appl Mater Inter, 2015, 7(42): 23685–25693.
[42] ZHAO X, ZHANG Z, ZHANG X, et al. Computational screening and first-principles investigations of NASICON-type LixM2(PO4)3 as solid electrolytes for Li batteries[J]. J Mater Chem A, 2018, 6(6): 2625–2631.
[43] HAN F, ZHU Y, HE X, et al. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes[J]. Adv Energy Mater, 2016, 6(8): 1501590.
[44] RICHARDS W D, MIARA L J, WANG Y, et al. Interface stability in solid-state batteries[J]. Chem Mat, 2015, 28(1): 266–273.
[45] ZHU Y, HE X, MO Y. First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries[J]. J Mater Chem A, 2016, 4(9): 3253–3266.
[46] MIARA L J, RICHARDS W D, WANG Y E, et al. First-principles studies on cation dopants and electrolyte| cathode interphases for lithium garnets[J]. Chem Mater, 2015, 27(11): 4040–4047.
[47] ANUROVA N A, BLATOV V A. Analysis of ion-migration paths in inorganic frameworks by means of tilings and Voronoi-Dirichlet partition: A comparison[J]. Acta Crystallogr B, 2009, 65(Pt 4): 426–434.
[48] SALE M, AVDEEV M. 3DBVSMAPPER: A program for automatically generating bond–valence sum landscapes[J]. J Appl Crystallogr, 2012, 45(5): 1054–1056.
[49] BROWN I D. Recent developments in the methods and applications of the bond valence model[J]. Chem Rev, 2009, 109(12): 6858–6919.
[50] JÓNSSON H, MILLS G, JACOBSEN K W. Nudged elastic band method for finding minimum energy paths of transitions[M]//BERNE B J, CICCOTTI G, COKER D F ed. Classical and Quantum Dynamics in Condensed Phase Simulations. Singapore: World scientific, 1998: 385–404.
[51] URBAN A, SEO D-H, CEDER G. Computational understanding of Li-ion batteries[J]. NPJ Comput. Mater, 2016, 2(1): 16002.
[52] HOLZWARTH N A W. First principles modeling of electrolyte materials in all-solid-state batteries[J]. Phys Procedia, 2014, 57: 29–37.
[53] DENG Z, MO Y, ONG S P. Computational studies of solid-state alkali conduction in rechargeable alkali-ion batteries[J]. NPG Asia Mater, 2016, 8(3): e254.
[54] HENKELMAN G, UBERUAGA B P, JóNSSON H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. J Chem Phys, 2000, 113(22): 9901–9904.
[55] LEPLEY N D, HOLZWARTH N A W, DU Y A. Structures, Li+ mobilities, and interfacial properties of solid electrolytes Li3PS4 and Li3PO4 from first principles[J]. Phys Rev B, 2013, 88(10): 104103.
[56] CHEN C-H, DU J, CHEN L Q. Lithium ion diffusion mechanism in lithium lanthanum titanate solid-state electrolytes from atomistic simulations[J]. J Am Ceram Soc, 2015, 98(2): 534–542.
[57] MORIWAKE H, GAO X, KUWABARA A, et al. Domain boundaries and their influence on Li migration in solid-state electrolyte (La,Li)TiO3[J]. J Power Sources, 2015, 276: 203–207.
[58] SENEVIRATHNE K, DAY C S, GROSS M D, et al. A new crystalline LiPON electrolyte: Synthesis, properties, and electronic structure[J]. Solid State Ionics, 2013, 233: 95–101.
[59] WANG Z, SHAO G. Theoretical design of solid electrolytes with superb ionic conductivity: Alloying effect on Li+ transportation in cubic Li6PA5X chalcogenides[J]. J Mater Chem A, 2017, 5(41): 21846–57.
[60] SHI J J, YIN G Q, JING L M, et al. Lithium and sodium diffusion in solid electrolyte materials of AM2(PO4)3 (A=Li, Na, M=Ti, Sn and Zr)[J]. Int J Mod Phys B, 2014, 28(26): 1450176.
[61] DU Y A, HOLZWARTH N. Mechanisms of Li+ diffusion in crystalline γ-and β-Li3PO4 electrolytes from first principles[J]. Phys Rev B, 2007, 76(17): 174302.
[62] HOOD Z D, KATES C, KIRKHAM M, et al. Structural and electrolyte properties of Li4P2S6[J]. Solid State Ionics, 2016, 284: 61–70.
[63] JALEM R, AOYAMA T, NAKAYAMA M, et al. Multivariate method-assisted Ab initio study of olivine-type LiMXO4 (Main group M2+–X5+ and M3+–X4+) compositions as potential solid electrolytes[J]. Chem Mater, 2012, 24(7): 1357–1364.
[64] MEES M J, POURTOIS G, ROSCIANO F, et al. First-principles material modeling of solid-state electrolytes with the spinel structure[J]. Phys Chem Chem Phys, 2014, 16(11): 5399–5406.
[65] LEPLEY N D, HOLZWARTH N A W. Computer modeling of crystalline electrolytes: Lithium thiophosphates and phosphates[J]. J Electrochem Soc, 2012, 159(5): A538–A547.
[66] KANG J, CHUNG H, DOH C, et al. Integrated study of first principles calculations and experimental measurements for Li-ionic conductivity in Al-doped solid-state LiGe2(PO4)3 electrolyte[J]. J Power Sources, 2015, 293: 11–16.
[67] WANG Y, RICHARDS W D, ONG S P, et al. Design principles for solid-state lithium superionic conductors[J]. Nat Mater, 2015, 14(10): 1026–1031.
[68] HOLZWARTH N A W, LEPLEY N D, DU Y A. Computer modeling of lithium phosphate and thiophosphate electrolyte materials[J]. J Power Sources, 2011, 196(16): 6870–6876.
[69] MEIER K, LAINO T, CURIONI A. Solid-state electrolytes: Revealing the mechanisms of Li-ion conduction in tetragonal and cubic LLZO by first-principles calculations[J]. J Phys Chem C, 2014, 118(13): 6668–6679.
[70] XIONG K, LONGO R C, KC S, et al. Behavior of Li defects in solid electrolyte lithium thiophosphate Li7P3S11: A first principles study[J]. Comput Mater Sci, 2014, 90: 44–49.
[71] XIAO R, LI H, CHEN L. High-throughput design and optimization of fast lithium ion conductors by the combination of bond-valence method and density functional theory[J]. Sci Rep-UK, 2015, 5: 14227.
[72] YOUNG W, ELCOCK E. Monte Carlo studies of vacancy migration in binary ordered alloys: I[J]. P Phys Soc, 1966, 89(3): 735.
[73] BORTZ A B, KALOS M H, LEBOWITZ J L. A new algorithm for Monte Carlo simulation of Ising spin systems[J]. J Comput Phys, 1975, 17(1): 10–18.
[74] GILLESPIE D T. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions[J]. J Comput Phys, 1976, 22(4): 403–434.
[75] ADAMS S, RAO R P. Structural requirements for fast lithium ion migration in Li10GeP2S12[J]. J Mater Chem, 2012, 22(16): 7687–7691.
[76] DE KLERK N J J, VAN DER MAAS E, WAGEMAKER M. Analysis of diffusion in solid-state electrolytes through MD simulations, improvement of the Li-ion conductivity in beta-Li3PS4 as an example[J]. ACS Appl Energy Mater, 2018, 1(7): 3230–3242.
[77] CAR R, PARRINELLO M. Unified approach for molecular dynamics and density-functional theory[J]. Phys Rev Lett, 1985, 55(22): 2471.
[78] XU M, DING J, MA E. One-dimensional stringlike cooperative migration of lithium ions in an ultrafast ionic conductor[J]. Appl Phys Lett, 2012, 101(3): 031901.
[79] MO Y, ONG S P, CEDER G. First principles study of the Li10GeP2S12 lithium super ionic conductor material[J]. Chem Mat, 2011, 24(1): 15–17.
[80] HE X, ZHU Y, MO Y. Origin of fast ion diffusion in super-ionic conductors[J]. Nat Commun, 2017, 8: 15893.
[81] RICHARDS W D, WANG Y, MIARA L J, et al. Design of Li1+2xZn1−xPS4, a new lithium ion conductor[J]. Energy Environ Sci, 2016, 9(10): 3272–3278.
[82] JALEM R, YAMAMOTO Y, SHIIBA H, et al. Concerted migration mechanism in the Li ion dynamics of garnet-type Li7La3Zr2O12[J]. Chem Mat, 2013, 25(3): 425–430.
[83] DENG Z, ZHU Z, CHU I-H, et al. Data-driven first-principles methods for the study and design of alkali superionic conductors[J]. Chem Mater, 2016, 29(1): 281–288.
[84] HE X, ZHU Y, EPSTEIN A, et al. Statistical variances of diffusional properties from ab initio molecular dynamics simulations[J]. NPJ Comput Mater, 2018, 4(1): 18.
[85] LE ROUX S, JUND P. Ring statistics analysis of topological networks: New approach and application to amorphous GeS2 and SiO2 systems[J]. Comput Mater Sci, 2010, 49(1): 70–83.
[86] THANGADURAI V, PINZARU D, NARAYANAN S, et al. Fast solid-state Li ion conducting garnet-type structure metal oxides for energy storage[J]. J Phys Chem Lett, 2015, 6(2): 292–299.
[87] BERNSTEIN N, JOHANNES M, HOANG K. Origin of the structural phase transition in Li7La3Zr2O12[J]. Phys Rev Lett, 2012, 109(20): 205702.
[88] National Science and Technology Council OSTP. Materials Genome Initiative for Global Competitiveness[EB/OL]. [2011] http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf. 
[89] ZHANG X, ZHANG Z, WU D, et al. Computational screening of 2D materials and rational design of heterojunctions for water splitting photocatalysts[J]. Small Method, 2018, 2(5): 1700359.
[90] ZHANG X, CHEN A, ZHOU Z. High-throughput computational screening of layered and two-dimensional materials[J]. Wiley Interdiscip Rev-Comput Mol Sci, 2019, 9(1): e1385.
[91] ZHANG X, ZHANG Z, YAO S, et al. An effective method to screen sodium-based layered materials for sodium ion batteries[J]. NPJ Comput Mater, 2018, 4(1): 13.
[92] OGANOV A R, MA Y, LYAKHOV A O, et al. Evolutionary crystal structure prediction and novel high-pressure phases[M]// BOLDYREVA E, DERA P eds. High-pressure Crystallography. Dordrecht: Springer, 2010: 293–323.
[93] WANG Y, LV J, ZHU L, et al. Crystal structure prediction via particle-swarm optimization[J]. Phys Rev B, 2010, 82(9): 094116.
[94] WANG Y, LV J, ZHU L, et al. CALYPSO: A method for crystal structure prediction[J]. Comput Phys Commun, 2012, 183(10): 2063–2670.
[95] WANG X, XIAO R, LI H, et al. Oxysulfide LiAlSO: A lithium superionic conductor from first principles[J]. Phys Rev Lett, 2017, 118(19): 195901.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com