首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
固态电池失效分析
作者: 涛1  超1  琛2  蕾1 朱志斌1 崔光磊2 董杉木2  玮1 
单位:(1. 中国海洋大学材料科学与工程学院 山东 青岛 266100  2. 中国科学院青岛生物能源与过程研究所 山东 青岛 266101) 
关键词:全固态电池 失效行为 界面 
分类号:TM911
出版年,卷(期):页码:2019,47(10):0-0
DOI:
摘要:

 固态电池具有高功率密度、高能量密度、高可靠性和安全等优点,此外,由于没有液体的存在,还避免了液态电池易燃、易挥发的缺点。因而使得固态电池在储能领域受到广泛的关注。提高固态电池的性能,关键在于从本质上去了解固态电池的失效行为。详细介绍了固态电池的失效行为以及失效机理,并对固态电池的研究进展进行了概述。

基金项目:
国家自然科学基金(51572247);中国科学院青年创新促进会(2016193)。
作者简介:
参考文献:

 [1] ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652−657.

[2] BRUCE D, HARESH K, JEAN-MARIE T. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928−935.
[3] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359−367.
[4] CHU S, MAJUMDAR A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294−303.
[5] LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nat Chem, 2015, 7(1): 19−29.
[6] MIZUNO F, HAYASHI A, TADANAGA K, et al. Effects of conductive additives in composite positiveelectrodes on charge−discharge behaviors of all-solid-statelithium secondary batteries[J]. J Electrochem Soc, 2005, 152(8): A1499−A1503.
[7] MA J, CHEN B, WANG L, et al. Progress and prospect on failure mechanisms of solid-state lithium batteries[J]. J Power Sources, 2018, 392: 94−115.
[8] XU K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chem Rev, 2004, 104(10): 4303−4417.
[9] KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nat Energy, 2016, 1(4): 1−7.
[10] YUE L, MA J, ZHANG J, et al. All solid-state polymer electrolytes for high-performance lithium ion batteries[J]. Energy Storage Mater, 2016, 5(5): 139−164.
[11] TAN P, CHEN B, XU H, et al. Flexible Zn– and Li–air batteries: Recent advances, challenges, and future perspectives[J]. Energy Environ Sci, 2017, 10(10): 2056−2080.
[12] XIN S, YOU Y, WANG S, et al. Solid-state lithium metal batteries promoted by nanotechnology: Progress and prospects[J]. ACS Energy Lett, 2017, 2(6): 1385–1394.
[13] MANTHIRAM A, YU X, WANG S. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nat Rev Mater, 2017, 2(4): 1−16.
[14] JUNG Y S, OH D Y, NAM Y J, et al. Issues and challenges for bulk-type all-solid-state rechargeable lithium batteries using sulfide solid electrolytes[J]. Cheminform, 2015, 46(28): 472−485.
[15] KOERVER R, AYGU?N. I, LEICHTWEI . T, et al. Capacity fade in solid-state batteries:Interphase formation and chemomechanical processes in nickel-rich layered oxide cathodesand lithium thiophosphate solid electrolytes[J]. Chem Mater, 2017, 29(13): 5574−5582.
[16] GOGOANA R, PINSON M B, BAZANT M Z, et al. Internal resistance matching for parallel-connected lithium-ion cells and impacts on battery pack cycle life[J]. J Power Sources, 2014, 252: 8−13.
[17] YU C, EIJCK L V, GANAPATHY S, et al. Synthesis, structure and electrochemical performance of the argyrodite Li6PS5Cl solid electrolyte for Li-ion solid state batteries[J]. Electrochim Acta, 2016, 215: 93−99.
[18] OH G, HIRAYAMA M, KWON O, et al. Bulk-type all solid-state batteries with 5 V class LiNi0.5Mn1.5O4 cathode and Li10GeP2S12 solid electrolyte[J]. Chem Mater, 2016, 28(8): 2634–2640.
[19] LIU T, ZHANG Y, CHEN R, et al. Non-successive degradation in bulk-type all-solid-state lithium battery with rigid interfacial contact[J]. Electrochem Commun, 2017, 79: 1−4.
[20] BOARETTO N, BITTNER A, BRINKMANN C, et al. Highly conducting 3D-hybrid polymer electrolytes for lithium batteries based on siloxane networks and cross-linked organic polar interphases[J]. Chem Mater, 2014, 26(22): 6339−6350.
[21] ZHANG J, ZHAO J, YUE L, et al. Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries[J]. Adv Energy Mater, 2016, 5(24): 1501082.
[22] SHARAFI A, MEYER H M, NANDA J, et al. Characterizing the Li–Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density[J]. J Power Sources, 2016, 302: 135−139.
[23] KERR J B, HAN Y B, LIU G, et al. Interfacial behavior of polymer electrolytes[J]. Electrochim Acta, 2004, 50(2): 235−242.
[24] PORZ L, SWAMY T, SHELDON B W, et al. Mechanism of lithium metal penetration through inorganic solid electrolytes[J]. Adv Energy Mater, 2017, 7(20): 1701003.
[25] ROSSO M, BRISSOT C, TEYSSOT A, et al. Dendrite short-circuit and fuse effect on Li/polymer/Li cells[J]. Electrochim Acta, 2006, 51(25): 5334−5340.
[26] LEI C, WEI C, MARTIN K, et al. Effect of surface microstructure on electrochemical performance of garnet solid electrolytes[J]. ACS Appl Mater Inter, 2015, 7(3): 2073−2081.
[27] REN Y, SHEN Y, LIN Y, et al. Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte[J]. Electrochem Commun, 2015, 57: 27−30.
[28] CHENG E J, SHARAFI A, SAKAMOTO J. Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte[J]. Electrochim Acta, 2017, 223: 85−91.
[29] ZHOU D, LIU R, HE Y B, et al. SiO2 hollow nanosphere-based composite solid electrolyte for lithium metal batteries to suppress lithium dendrite growth and enhance cycle life[J]. Adv Energy Mater, 2016, 6(7): 1502214.
[30] QUAN P, SHYAMSUNDER A, NARAYANAN B, et al. Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries[J]. Nat Energy, 2018, 3: 783–791 
[31] WANG C, YANG Y, LIU X, et al. Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries[J]. ACS Appl Mater Inter, 2017, 9(15): 13694−13702.
[32] DOLLE M L, SANNIER L, BEAUDOIN B, et al. Live scanning electron microscope observations of dendritic growth in lithium/polymer cells[J]. Electrochem Solid-State Lett, 2002, 5(12): A286−A289.
[33] HABIN C, BYOUNGWOO K. Mechanical and thermal failure induced by contact between a Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte and Li metal in an all solid-state Li cell[J]. Chem Mater, 2017, 29(20): 8611–8619.
[34] BARR A, DEGUILHEM B, GROLLEAU S, et al. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications[J]. J Power Sources, 2013, 241(11): 680–689.
[35] OHTA N, TAKADA K, ZHANG L, et al. Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification[J]. Adv Mater, 2010, 18(17): 2226–2229.
[36] HARUYAMA J, SODEYAMA K, HAN L, et al. Space-charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery[J]. Chem Mater, 2014, 26(14): 4248–4255.
[37] GITTLESON F S, EL G F. Non-faradaic Li+ migration and chemical coordination across solid-state battery interfaces[J]. Nano Lett, 2017, 17(11): 6974–6982.
[38] SAKUDA A, HAYASHI A, TATSUMISAGO M. Interfacial observation between LiCoO2 electrode and Li2S−P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy[J]. Chem Mater, 2010, 22(3): 949–956.
[39] MIZUNO F, YADA C, IBA H. Solid-state lithium-ion batteries for electric vehicles[M]//PISTOIA G ed. Lithium-ion Batteries  Advances and Applications. Amsterdam: Elsevier, 2014: 273–291.
[40] KIM K H, IRIYAMA Y, YAMAMOTO K, et al. Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery[J]. J Power Sources, 2011, 196(2): 764–767.
[41] PARK K, YU B-C, JUNG J-W, et al. Electrochemical nature of the cathode interface for a solid-state lithium-ion battery interface between LiCoO2 and garnet-Li7La3Zr2O12[J]. Chem Mater, 2016, 28(21): 8051–8059
[42] AUVERGNIOT J R M, CASSEL A, LEDEUIL J-B, et al. Interface stability of argyrodite Li6PS5Cl toward LiCoO2, LiNi13Co13Mn13O2, and LiMn2O4 in bulk all-solid-state batteries[J]. Chem Mater, 2017, 29(9): 3883–3890.
[43] HANSEL C, AFYON S, RUPP J L. Investigating the all-solid-state batteries based on lithium garnets and a high potential cathode-LiMn1.5Ni0.5O4[J]. Nanoscale, 2016, 8(43): 18412–18420.
[44] KOBAYASHI Y, SEKI S, YAMANAKA A, et al. Development of high-voltage and high-capacity all-solid-state lithium secondary batteries[J]. J Power Sources, 2005, 146(1): 719–722.
[45] MIYASHIRO H, KOBAYASHI Y, SEKI S, et al. Fabrication of all-solid-state lithium polymer secondary batteries using Al2O3-coated LiCoO2[J]. Chem Mater, 2005, 17(23): 5603–5605.
[46] MA J, LIU Z L, CHEN B B, et al. A strategy to make high voltage LiCoO2 compatible with polyethylene oxide electrolyte in all-solid-state lithium ion batteries[J]. J Electrochem Soc, 2017, 164(14): A3454–A3461.
[47] KATO T, HAMANAKA T, YAMAMOTO K, et al. In-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid-state battery[J]. J Power Sources, 2014, 260: 292–298.
[48] ZHANG W, LEICHTWEI  T, CULVER S P, et al. The detrimental effects of carbon additives in Li10GeP2S12 based solid-state batteries[J]. ACS Appl Mater Interfaces, 2017, 9(41): 35888–35896.
[49] CHENG T, MERINOV B V, MOROZOV S I, et al. Quantum mechanics reactive dynamics study of solid Li-Electrode/Li6PS5Cl -electrolyte interface[J]. ACS Energy Lett, 2017, 2(6): 1454–1459.
[50] WU B, WANG S, EVANS W J, et al. Interfacial behaviours between lithium ion conductors and electrode materials in various battery systems[J]. J Mater Chem A, 2016, 4(40): 15266–15280.
[51] HANS-J R, SHIAO-TONG K, ECKERTH H, et al. Li6PS5X: A class of crystalline Li-rich solids with an unusually high Li+ mobility[J]. Angew Chem Int Edit, 2010, 47(4): 755–758.
[52] RAO R P, ADAMS S. Studies of lithium argyrodite solid electrolytes for all-solid-state batteries[J]. Phys Status Solidi, 2011, 208(8): 1804–1807.
[53] KLERK N J J D, ROSLON I, WAGEMAKER M. Diffusion mechanism of Li argyrodite solid electrolytes for Li-ion batteries and prediction of optimized halogen doping: The effect of Li vacancies, halogens, and halogen disorder[J]. Chem Mater, 2016, 28(21): 7955–7963.
[54] WANG S, XU H, LI W, et al. Interfacial chemistry in solid-state batteries: Formation of interphase and its consequences[J]. J Am Chem Soci, 2017, 140(1): 250–257.
[55] ZHANG W, SCHR DER D, ARLT T, et al. (Electro)chemical expansion during cyclingmonitoring the pressure changes in operating solid-state lithium batteries[J]. J Mater Chem A, 2017, 5: 9929–9936.
[56] LI J, DONG S, WANG C, et al. A study on interfacial stability of cathode/polycarbonate interface: Implication of overcharge and transition metal redox[J]. J Mater Chem A, 2018, 6(25): 11846–11852.
[57] JU J, WANG Y, CHEN B, et al. Integrated interface strategy toward room temperature solid-state lithium batteries[J]. ACS Appl Mater Inter, 2018, 10(16): 13588–13597.
[58] KIMURA K, YAJIMA M, TOMINAGA Y. A highly-concentrated poly(ethylene carbonate)-based electrolyte for all-solid-state Li battery working at room temperature[J]. Electrochem Commun, 2016, 66: 46–48.
[59] WANG C, ZHANG H, LIA J, et al. The interfacial evolution between polycarbonate-based polymer electrolyteand Li-metal anode[J]. J Power Sources, 2018, 397: 157−161.
[60] CHAI J, LIU Z, MA J, et al. In Situ generation of poly (vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO2 lithium batteries[J]. Adv Sci, 2017, 4(2): 1600377.
[61] CHEN B, JU J, MA J, et al. An insight into intrinsic interfacial properties between Li metals and Li10GeP2S12 solid electrolytes[J]. Phys Chem Chem Phys, 2017, 19(46): 31436–31442.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com