首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
正极组成对硫系全固态电池电化学性能的影响
作者: 通1 吴晓萌1 于红玉2 王金敏2 田文生1 吴勇民1 汤卫平1 
单位:(1. 空间电源技术国家重点实验室 上海空间电源研究所 上海 200245 2. 上海第二工业大学 上海 201209) 
关键词:全固态电池 钴酸锂 复合正极 硫系电解质 副反应 
分类号:TM911
出版年,卷(期):页码:2019,47(10):0-0
DOI:
摘要:

 研究了LiCoO2/Li10GeP2S12(LGPS)/In全固态电池复合正极中不同含量LiCoO2对其电化学性能发挥的影响。在25 ℃、0.05 C倍率条件下,LiCoO2含量占比为35% (质量分数,下同)、50%、65%的复合正极具有134.1、137.7、131.3 mA?h/g的首圈放电容量,以及74.1%、88.2%、87.8%的首圈Coulomb效率,均在LiCoO2含量为50%时出现了最大值。功率特性和循环性能也出现了相似的趋势。这是因为正极中LiCoO2含量较低时,大量的导电碳和LGPS中的S诱发的副反应生成了界面非活性层,导致了电池阻抗上升,阻碍了LiCoO2电化学反应的正常进行。而当正极中LiCoO2含量较高时,导电碳和LGPS电解质含量不足,引发导电网路缺失,影响了LiCoO2电化学性能的有效发挥。

基金项目:
国家重点研发计划项目(2018YFB0905400)。
作者简介:
参考文献:

 [1] JANEK J, ZEIER W G. A solid future for battery development[J]. Nat Energy, 2016, 500(400): 300.

[2] KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nat Energy, 2016, 1: 16030.
[3] 许晓雄, 邱志军, 官亦标, 等. 全固态锂电池技术的研究现状与展望[J]. 储能科学与技术, 2013(4): 331–341.
XU Xiaoxiong, QIU Zhijun, GUAN Yibiao, et al. Energy Storage Sci Technol (in Chinese), 2013(4): 331–341.
[4] HAN F, GAO T, ZHU Y, et al. A battery made from a single material[J]. Adv Mater, 2015, 27(23): 3473–3483.
[5] KATO T, HAMANAKA T, YAMAMOTO K, et al. In-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid-state battery[J]. J Power Sources, 2014, 260(16): 292–298.
[6] LUNTZ A C, VOSS J, REUTER K. Interfacial challenges in solid-state Li ion batteries[J]. J Phys Chem Lett, 2015: 4599–4604.
[7] OH G, HIRAYAMA M, KWON O, et al. Bulk-type all solid-state batteries with 5 V class LiNi0.5Mn1.5O4 cathode and Li10GeP2S12 solid electrolyte[J]. Chem Mater, 2016, 28(8): 2634–2640.
[8] RICHARDS W D, MIARA L J, WANG Y, et al. Interface stability in solid-state batteries[J]. Chem Mater, 2015, 28(1): 266–273.
[9] MA J, LIU Z, CHEN B, et al. A strategy to make high voltage LiCoO2 compatible with polyethylene oxide electrolyte in all-solid-state lithium ion batteries[J]. J Electrochem Soc, 2017, 164(14): A3454–A3461.
[10] KOERVER R, AYGU N I, LEICHTWEIß T, et al. Capacity fade in solid-state batteries: Interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes[J]. Chem Mater, 2017, 29(13): 5574–5582.
[11] AUVERGNIOT J, CASSEL A, LEDEUIL J B, et al. Interface stability of argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in bulk all-solid-state batteries[J]. Chem Mater, 2017, 29(9): 3883–3890.
[12] SUMITA M, TANAKA Y, IKEDA M, et al. Charged and discharged states of cathode/sulfide electrolyte interfaces in all-solid-state lithium ion batteries[J]. J Phys Chem C, 2016, 120(25): 13332–13339.
[13] HÄNSEL C, AFYON S, RUPP J L. Investigating the all-solid-state batteries based on lithium garnets and a high potential cathode–LiMn1.5Ni0.5O4[J]. Nanoscale, 2016, 8(43): 18412–18420.
[14] HARUYAMA J, SODEYAMA K, HAN L, et al. Space–charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery[J]. Chem Mater, 2014, 26(14): 4248–4255.
[15] KIM D H, OH D Y, PARK K H, et al. Infiltration of solution-processable solid electrolytes into conventional Li-ion-battery electrodes for all-solid-state Li-ion batteries[J]. Nano Lett, 2017, 17(5): 3013–3020.
[16] ITO Y, YAMAKAWA S, HAYASHI A, et al. Effects of the microstructure of solid-electrolyte-coated LiCoO2 on its discharge properties in all-solid-state lithium batteries[J]. J Mater Chem A, 2017, 5(21): 10658–10668.
[17] HAYASHI A, SAKUDA A, TATSUMISAGO M. Development of sulfide solid electrolytes and interface formation processes for bulk-type all-solid-state Li and Na batteries[J]. Front Energy Res, 2016, 4: 25.
[18] ZHANG W, WEBER D A, WEIGAND H, et al. Interfacial processes and influence of composite cathode microstructure controlling the performance of all-solid-state lithium batteries[J]. ACS Appl Mater Interfaces, 2017, 9(21): 17835–17845.
[19] MIZUNO F, HAYASHI A, TADANAGA K, et al. Design of composite positive electrode in all-solid-state secondary batteries with Li2S-P2S5 glass–ceramic electrolytes[J]. J Power Sources, 2005, 146(1/2): 711–714.
[20] ZHANG W, LEICHTWEIß T, CULVER S P, et al. The detrimental effects of carbon additives in Li10GeP2S12-based solid-state batteries[J]. ACS Appl Mater Interfaces, 2017, 9(41): 35888–35896.
[21] OHTA N, TAKADA K, SAKAGUCHI I, et al. LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries[J]. Electrochem. Commun, 2007, 9(7): 1486–1490.
[22] ALEXANDER W, CALVERT L, GAMBLE R, et al. The lithium–indium system[J]. Can J Chem, 1976, 54(7): 1052–1060.
[23] LI W J, HIRAYAMA M, SUZUKI K, et al. Fabrication and electrochemical properties of a LiCoO2 and Li10GeP2S12 composite electrode for use in all-solid-state batteries[J]. Solid State Ionics, 2016, 285: 136–142.
[24] MÉNÉTRIER M, SAADOUNE I, LEVASSEUR S, et al. The insulator-metal transition upon lithium deintercalation from LiCoO2: Electronic properties and 7Li NMR study[J]. J Mater Chem, 1999, 9(5): 1135–1140.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com