首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
石榴石型全固态锂离子电池复合正极研究进展
作者:郭现伟 郝良威 王永涛 孙芙蓉 尉海军 
单位:(北京工业大学材料科学与工程学院 新型功能材料教育部重点实验室 北京 100124) 
关键词:石榴石型固态电解质 全固态锂离子电池 复合正极 界面修饰 
分类号:TM911
出版年,卷(期):页码:2019,47(10):0-0
DOI:
摘要:

 全固态锂离子电池具有高能量密度、长循环寿命和高安全性等优点,是当前的研究热点。固态电解质是全固态电池的核心组件,石榴石型固态电解质被认为是体型全固态锂离子电池理想的电解质材料。基于石榴石固态电解质构筑复合正极,解决固态电解质与正极材料、电解质层与复合正极层的固–固界面问题,是提高电池性能的关键。详述了石榴石电解质基复合正极构筑以及与电解质间界面修饰的研究进展,并展望了石榴石型全固态锂离子电池的复合正极构筑及界面修饰的发展方向。

基金项目:
北京市教委科技重点项目(KZ201910005002);国家重点研发计划(2018YFB0104302)。
作者简介:
参考文献:

 [1] ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652–657.

[2] LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nat Chem, 2015, 7(1): 19–29.
[3] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359–367.
[4] CHOI J W, AURBACH D. Promise and reality of post-lithium-ion batteries with high energy densities[J]. Nat Rev Mater, 2016; 1(4): 16013.
[5] ZHANG R, LI N W, CHENG X B, et al. Advanced micro/nanostructures for lithium metal anodes[J]. Adv Sci (Weinh), 2017, 4(3): 1600445.
[6] YANG C, FU K, ZHANG Y, HITZ E, et al. Protected lithium-metal anodes in batteries: From liquid to solid[J]. Adv Mater, 2017, 29(36): 1701169.
[7] ZHOU D, LIU R, HE Y-B, et al. SiO2 hollow nanosphere-based composite solid electrolyte for lithium metal batteries to suppress lithium dendrite growth and enhance cycle life[J]. Adv Energy Mater, 2016, 6(7): 1502214.
[8] 陈凯, 程丽乾. 体型无机全固态锂离子电池研究进展[J]. 硅酸盐学报, 2017, 45(6): 785–792.
CHEN Kai, CHENG Liqian. J Chin Ceram Soc, 2017, 45(6): 785–792.
[9] 任耀宇. 全固态锂电池研究进展[J]. 科技导报, 2017, 35(8): 26–36.
REN Yaoyu. Sci Technol Rev (in Chinese), 2017, 35(8): 26–36.
[10] GAO Z, SUN H, FU L, et al. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries[J]. Adv Mater. 2018; 30(17): 1705702.
[11] HAN X, GONG Y, FU K K, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries[J]. Nat Mater, 2017, 16(5): 572–579.
[12] ZHAO C-Z, CHEN P-Y, ZHANG R, et al. An ion redistributor for dendrite-free lithium metal anodes[J]. Sci adv, 2018, 4(11): 3446.
[13] FU K K, GONG Y, DAI J, et al. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries[J]. P Natl A Sci, 2016, 113(26): 7094–7099.
[14] CHENG X-B, ZHAO C-Z, YAO Y-X, et al. Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes[J]. Chem, 2019, 5(1): 74–96.
[15] LIN D, LIU Y, CUI Y. Reviving the lithium metal anode for high-energy batteries[J]. Nat Nanotechnol, 2017, 12(3): 194–206.
[16] MANTHIRAM A, YU X, WANG S. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nat Rev Mater, 2017, 2(4): 16103.
[17] 郑碧珠, 王红春, 马嘉林, 等. 固态电池无机固态电解质/电极界面的研究进展[J]. 中国科学:化学, 2017(5): 85–99.
ZHENG Bizhu, WANG Hongchun, MA Jialin, et al. Sci Chin Chem (in Chinese), 2017(5): 85–99.
[18] XU L, TANG S, CHENG Y, et al. Interfaces in solid-state lithium batteries[J]. Joule, 2018, 2(10): 1991–2015.
[19] HOU W, GUO X, SHEN X, et al. Solid electrolytes and interfaces in all-solid-state sodium batteries: Progress and perspective[J]. Nano Energy, 2018, 52: 279–291.
[20] 李杨, 丁飞, 桑林, 等. 全固态锂离子电池关键材料研究进展[J]. 储能科学与技术, 2016, 5(5): 615–626.
LI Yang, DING Fei, SANG Lin, et al. Energ Stor Sci Technol (in Chinese), 2016, 5(5): 615–626.
[21] JANEK J, ZEIER W G. A solid future for battery development[J]. Nat Energy, 2016, 1(9): 16141.
[22] LIU J, LIU T, PU Y, et al. Facile synthesis of NASICON-type Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte and its application for enhanced cyclic performance in lithium ion batteries through the introduction of an artificial Li3PO4 SEI layer[J]. RSC Adv, 2017, 7(74): 46545–46552.
[23] FU J. Fast Li+ ion conducting glass–ceramics in the system Li2O–Al2O3–GeO–P2O5[J]. Solid State Ionics, 1997, 104(3/4): 191–194.
[24] WENZEL S, RANDAU S, LEICHTWEIß T, et al. Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode[J]. Chem Mater, 2016, 28(7): 2400–2407.
[25] HAN F, ZHU Y, HE X, et al. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes[J]. Adv Energy Mater, 2016, 6(8): 1501590.
[26] ONG S P, MO Y, RICHARDS W D, et al. Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12 (M=Ge, Si, Sn, Al or P, and X=O, S or Se) family of superionic conductors[J]. Energ Environ Sci, 2013, 6(1): 148–156.
[27] WANG C, ZHAO Y, SUN Q, et al. Stabilizing interface between Li10SnP2S12 and Li metal by molecular layer deposition[J]. Nano Energy, 2018, 53: 168–174.
[28] KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nat mater, 2011, 10(9): 682.
[29] LIN Z, GUO X, YU H. Amorphous modified silyl-terminated 3D polymer electrolyte for high-performance lithium metal battery[J]. Nano Energy, 2017, 41: 646–653.
[30] MUSHTAQ M, GUO X-W, BI J-P, et al. Polymer electrolyte with composite cathode for solid-state Li–CO2 battery[J]. Rare Metals, 2018, 37(6): 520–526.
[31] YUE L, MA J, ZHANG J, et al. All solid-state polymer electrolytes for high-performance lithium ion batteries[J]. Energ Stor Mater, 2016, 5: 139–164.
[32] IKEDA Y, WADA Y, MATOBA Y, et al. Characterization of comb-shaped high molecular weight poly(oxyethylene) with tri(oxyethylene) side chains for a polymer solid electrolyte[J]. Electrochim Acta, 2000, 45(8): 1167–1174.
[33] TOMINAGA Y, YAMAZAKI K. Fast Li-ion conduction in poly(ethylene carbonate)-based electrolytes and composites filled with TiO2 nanoparticles[J]. Chem Commun (Camb), 2014, 50(34): 4448–4450.
[34] ZHANG Z, JIN J, BAUTISTA F, et al. Ion conductive characteristics of cross-linked network polysiloxane-based solid polymer electrolytes[J]. Solid State Ionics, 2004, 170(3/4): 233–238.
[35] OKUMURA T, NISHIMURA S. Lithium ion conductive properties of aliphatic polycarbonate[J]. Solid State Ionics, 2014, 267: 68–73.
[36] TANAKA R, SAKURAI M, SEKIGUCHI H, et al. Lithium ion conductivity in polyoxyethylene/polyethylenimine blends[J]. Electrochim Acta, 2001, 46(10): 1709–1715.
[37] OH B, VISSERS D, ZHANG Z, et al. New interpenetrating network type poly(siloxane-g-ethylene oxide) polymer electrolyte for lithium battery[J]. J Power Sources, 2003, 119/120/121: 442–447.
[38] SUN B, MINDEMARK J, EDSTRÖM K, et al. Polycarbonate-based solid polymer electrolytes for Li-ion batteries[J]. Solid State Ionics, 2014, 262: 738–742.
[39] ZHANG J, ZHAO J, YUE L, et al. Safety-reinforced poly (propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries[J]. Adv Energy Mater, 2015, 5(24): 1501082.
[40] ROLLAND J, POGGI E, VLAD A, et al. Single-ion diblock copolymers for solid-state polymer electrolytes[J]. Polymer, 2015, 68: 344–352.
[41] ZHAO Q, LIU X, STALIN S, et al. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries[J]. Nat Energy, 2019, 4(5): 365–373.
[42] LIN Y, LI J, LAI Y, et al. A wider temperature range polymer electrolyte for all-solid-state lithium ion batteries[J]. RSC Adv, 2013, 3(27): 10722.
[43] 李杨, 连芳, 周国治. 应用于锂离子电池的无机晶态固体电解质导电性能研究进展[J]. 硅酸盐学报, 2013, 27(7): 950–958.
LI Yang, LIAN Fang, ZHOU Guozhi. J Chin Ceram Soc, 2013, 27(7): 950–958.
[44] ZHANG Z, SHAO Y, LOTSCH B, et al. New horizons for inorganic solid state ion conductors[J]. Energy Environ Sci, 2018, 11(8): 1945–1976.
[45] FU K K, GONG Y, LIU B, et al. Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface[J]. Sci Adv, 2017, 3(4): 1601659.
[46] MURUGAN R, THANGADURAI V, WEPPNER W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12[J]. Angew Chem In Edit, 2007, 46(41): 7778–7781.
[47] MEIER K, LAINO T, CURIONI A. Solid-state electrolytes: Revealing the mechanisms of Li-ion conduction in tetragonal and cubic LLZO by first-principles calculations[J]. J Phys Chem C, 2014, 118(13): 6668–6679.
[48] WU J F, PANG W K, PETERSON V K, et al. Garnet-type fast Li-ion conductors with high ionic conductivities for all-solid-state batteries[J]. ACS Appl Mater Inter, 2017, 9(14): 12461–12468.
[49] LIU Q, GENG Z, HAN C, et al. Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries[J]. J Power Sources, 2018, 389: 120–134.
[50] MIARA L J, RICHARDS W D, WANG Y E, et al. First-principles studies on cation dopants and electrolyte cathode interphases for lithium garnets[J]. Chem Mater, 2015, 27(11): 4040–4047.
[51] REN Y, HUI D, CHEN R, et al. Effects of Li source on microstructure and ionic conductivity of Al-contained Li6.75La3Zr1.75Ta0.25O12 ceramics[J]. J Eur Ceram Soc, 2015, 35(2): 561–572.
[52] LIU C, RUI K, SHEN C, et al. Reversible ion exchange and structural stability of garnet-type Nb-doped Li7La3Zr2O12 in water for applications in lithium batteries[J]. J Power Sources, 2015, 282: 286–293.
[53] DEVIANNAPOORANI C, DHIVYA L, RAMAKUMAR S, et al. Lithium ion transport properties of high conductive tellurium substituted Li7La3Zr2O12 cubic lithium garnets[J]. J Power Sources, 2013, 240: 18–25.
[54] LI Y, ZHENG W, YANG C, et al. W-doped Li7La3Zr2O12 ceramic electrolytes for solid state Li-ion batteries[J]. Electrochim Acta, 2015, 180: 37–42.
[55] SHAO C, YU Z, LIU H, et al. Enhanced ionic conductivity of titanium doped Li7La3Zr2O12 solid electrolyte[J]. Electrochim Acta, 2017, 225: 345–349.
[56] WOLFENSTINE J, RATCHFORD J, RANGASAMY E, et al. Synthesis and high Li-ion conductivity of Ga-stabilized cubic Li7La3Zr2O12[J]. Mater Chem Phys, 2012, 134(2/3): 571–575.
[57] HAN F, YUE J, CHEN C, et al. Interphase engineering enabled all-ceramic lithium battery[J]. Joule, 2018, 2(3): 497–508.
[58] SHIN D O, OH K, KIM K M, et al. Synergistic multi-doping effects on the Li7La3Zr2O12 solid electrolyte for fast lithium ion conduction[J]. Sci Rep, 2015, 5: 18053.
[59] KOKAL I, SOMER M, NOTTEN P H L, et al. Sol–gel synthesis and lithium ion conductivity of Li7La3Zr2O12 with garnet-related type structure[J]. Solid State Ionics, 2011, 185(1): 42–46.
[60] BAEK S W, LEE J M, KIM T Y, et al. Garnet related lithium ion conductor processed by spark plasma sintering for all solid state batteries[J]. J Power Sources, 2014, 249: 197–206.
[61] DU F, NING Z, LI Y, et al. All solid state lithium batteries based on lamellar garnet-type ceramic electrolytes[J]. J Power Sources, 2015, 300: 24–28.
[62] ZHAO N, KHOKHAR W, BI Z, et al. Solid garnet batteries[J]. Joule, 2019, 3(5): 1190–1199.
[63] OHTA S, KOBAYASHI T, SEKI J, et al. Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte[J]. J Power Sources, 2012, 202: 332–335.
[64] OHTA S, KOMAGATA S, SEKI J, et al. All-solid-state lithium ion battery using garnet-type oxide and Li3BO3 solid electrolytes fabricated by screen-printing[J]. J Power Sources, 2013, 238(28): 53–56.
[65] LIU T, REN Y, SHEN Y, et al. Achieving high capacity in bulk-type solid-state lithium ion battery based on Li6.75La3Zr1.75Ta0.25O12 electrolyte: Interfacial resistance[J]. J Power Sources, 2016, 324: 349–357.
[66] LIU T, ZHANG Y, CHEN R, et al. Non-successive degradation in bulk-type all-solid-state lithium battery with rigid interfacial contact[J]. Electrochem Commun, 2017, 79: 1–4.
[67] LIU T, ZHANG Y, ZHANG X, Et al. Enhanced electrochemical performance of bulk type oxide ceramic lithium batteries enabled by interface modification[J]. J Mater Chem A, 2018, 6(11): 4649–4657.
[68] OHTA S, SEKI J, YAGI Y, et al. Co-sinterable lithium garnet-type oxide electrolyte with cathode for all-solid-state lithium ion battery[J]. J Power Sources, 2014, 265(265): 40–44.
[69] SHOJI M, MUNAKATA H, KANAMURA K. Fabrication of all-solid-state lithium-ion cells using three-dimensionally structured solid electrolyte Li7La3Zr2O12 pellets[J]. Front Energy Res, 2016, 4: 32.
[70] WANG D, SUN Q, LUO J, et al. Mitigating the interfacial degradation in cathodes for high-performance oxide-based solid-state lithium batteries[J]. ACS Appl Mater Interfaces, 2019, 11(5): 4954–4961.
[71] KATO T, HAMANAKA T, YAMAMOTO K, et al. In-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid-state battery[J]. J Power Sources, 2014, 260(16): 292–298.
[72] KIM K H, IRIYAMA Y, YAMAMOTO K, et al. Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery[J]. J Power Sources, 2011, 196(2): 764–767.
[73] ZARABIAN M, BARTOLINI M, PEREIRA-ALMAO P, et al. X-ray photoelectron spectroscopy and AC impedance spectroscopy studies of Li-La-Zr-O solid electrolyte thin film/LiCoO2 cathode interface for all-solid-state Li batteries[J]. J Electrochem Soc, 2017, 164(6): A1133–A1139.
[74] PARK K, YU B C, JUNG J W, et al. Electrochemical nature of the cathode interface for a solid-state lithium-ion battery: Interface between LiCoO2 and garnet-Li7La3Zr2O12[J]. Chem Mater, 2016, 28(21): 8051–8059.
[75] MIARA L, WINDMULLER A, TSAI C L, et al. About the compatibility between high voltage spinel cathode materials and solid oxide electrolytes as a function of temperature[J]. ACS Appl Mater Inter, 2016, 8(40): 26842–26850.
[76] REN Y, LIU T, YANG S, et al. Chemical compatibility between garnet-like solid state electrolyte Li6.75La3Zr1.75Ta0.25O12 and major commercial lithium battery cathode materials[J]. J Materiomics, 2016, 2(3): 256–264.
[77] ZHANG N, LONG X, WANG Z, et al. Mechanism study on the interfacial stability of a lithium garnet-type oxide electrolyte against cathode materials[J]. ACS Appl Energy Mater, 2018, 1(11): 5968–5976.
[78] LIU B, GONG Y, FU K, et al. Garnet solid electrolyte protected Li-metal batteries[J]. ACS Appl Mater Inter, 2017, 9(22): 18809–18815.
[79] DONG D, ZHOU B, SUN Y, et al. Polymer electrolyte glue: A universal interfacial modification strategy for all-solid-state Li batteries[J]. Nano Lett, 2019, 19(4): 2343–2349.
[80] HE M, CUI Z, HAN F, et al. Construction of conductive and flexible composite cathodes for room-temperature solid-state lithium batteries[J]. J Alloy Compd, 2018, 762: 157–162.
[81] LU Z, YU J, WU J, et al. Enabling room-temperature solid-state lithium-metal batteries with fluoroethylene carbonate-modified plastic crystal interlayers[J]. Energy Storage Mater, 2019; 18: 311–319.
[82] YOSHIMA K, HARADA Y, TAKAMI N. Thin hybrid electrolyte based on garnet-type lithium-ion conductor Li7La3Zr2O12 for 12 V-class bipolar batteries[J]. J Power Sources, 2016, 302: 283–290.
[83] ZHOU W, ZHU Y, GRUNDISH N, et al. Polymer lithium-garnet interphase for an all-solid-state rechargeable battery[J]. Nano Energy, 2018, 53: 926–931.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com