首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
高庙子钠基膨润土纳米孔隙结构的同步辐射小角散射
作者: 磊1 李晓月1 杜守继1 侯东伟1 赵毅鑫2 华培成1 3  昆1 李东遥1 陈小文1 
单位:(1. 上海交通大学土木工程系 上海 200240 2. 中国矿业大学(北京)能源与矿业学院 北京 100083  3. 佐治亚理工学院计算学院 亚特兰大 GA30332) 
关键词:同步辐射 X射线小角散射 钠基膨润土 核废料 
分类号:P642.12
出版年,卷(期):页码:2019,47(10):0-0
DOI:
摘要:

 针对内蒙古地区2种钠基膨润土(GMZ001,GMZ07),采用同步辐射小角X射线散射(SAXS)技术进行纳米孔隙结构表征,通过FIT2D软件数据处理和背底散射扣除,校准并基于Porod校准后的曲线,利用最大熵统计方法得到孔径分布,分析了Guinier曲线并通过小角区域近似和外推方法,得到回转半径和孔径尺寸。同时,基于双对数曲线求斜率测定了分形维数。结果表明:GMZ07的散射强度大于GMZ001散射强度;Porod正偏离效应表明造成微密度起伏的不均匀区可能是膨润土中存在无定形成分。GMZ001分选性较GMZ07好,孔径集中;与GMZ001平均孔径和最可几孔径相比,GMZ07尺寸更小。最大熵理论估算的平均孔径相比于Guinier曲线估算的偏高,但差值不大。二者分形类型及维数差别不大,表明2种膨润土复杂程度类似。上述研究为膨润土SAXS制样、数据处理、孔结构参数获取提供参考。

基金项目:
国家自然科学基金项目(51479113, 41630633, 51874312, 51861145403)。
作者简介:
参考文献:

 [1] 张龙, 孙德安, 刘月妙. 两种高庙子钠基膨润土膨胀特性比较研究[J]. 岩土力学, 2016, 37(12): 3447?3454.

ZHANG Long, SUN Dean, LIU Yuemiao. Rock Soil Mech(in Chinese), 2015, 2016, 37(12): 3447?3454.
[2] 孟德林, 孙德安, 刘月妙. 高庙子膨润土与砂混合物的土-水特征曲线[J]. 岩土力学, 2012, 33(2): 509?514.
MENG Delin, SUN Dean, LIU Yuemiao. Rock Soil Mech(in Chinese), 2012, 33(2): 509?514.
[3] 闫小庆, 房营光, 张平. 膨润土对土体微观孔隙结构特征影响的试验研究[J]. 岩土工程学报, 2011, 33(8): 1302?1307.
YAN Xiaoqing, FANG Yingguang, ZHANG Ping. Chin J Geotech Eng(in Chinese), 2011, 33(8): 1302?1307.
[4] 任玉宾, 王胤, 杨庆. 颗粒级配与形状对钙质砂渗透性的影 响[J]. 岩土力学, 2018, 39(2): 491-497.
REN Yubin, WANG Yin, YANG Qing. Rock Soil Mech(in Chinese), 018, 39(2): 491?497.
[5] OLIVEIRA M L S, BOIT K D, SCHNEIDER I L, et al. Study of coal cleaning rejects by FIB and sample preparation for HR-TEM: Mineral surface chemistry and nanoparticle-aggregation control for health studies[J]. J Cleaner Prod, 2018, 188: 662?669.
[6] 崔亚楠, 赵琳, 孙广宁. 两种沥青胶浆的疲劳及自愈合性能试验[J]. 复合材料学报, 2018, 35(3): 699?705.
CUI Ya’nan, ZHAO Lin, SUN Guangning. Acta Mater Compositae Sin(in Chinese), 2018, 35(3): 699?705.
[7] RUI Y, SHENG H, HU Q, et al. Applying SANS technique to characterize nano-scale pore structure of Longmaxi shale, Sichuan Basin (China)[J]. Fuel, 2017, 197: 91?99.
[8] LANGE R S A D, HEKKINK J H A, KEIZER K, et al. Formation and characterization of supported microporous ceramic membranes prepared by sol?gel modification techniques[J]. J Membr Sci, 2017, 99(1): 57?75.
[9] ELYEZNASNI N, SELLAMI F, POT V, et al. Exploration of soil micromorphology to identify coarse-sized OM assemblages in X-ray CT images of undisturbed cultivated soil cores[J]. Geoderma, 2012, 179/180(6): 38?45.
[10] 张英, 邴慧, 杨成松. 基于SEM和MIP的冻融循环对粉质黏土强度影响机制研究[J]. 岩石力学与工程学报, 2015(S1): 3597?3603.
ZHANG Ying, BING Hui, YANG Chengsong. Chin J Rock Mech Eng(in Chinese), 2015(S1): 3597?3603.
[11] 张先伟, 孔令伟. 利用扫描电镜、压汞法、氮气吸附法评价近海黏土孔隙特征[J]. 岩土力学, 2013(s2): 134?142.
ZHANG Xianwei, KONG Lingwei. Rock Soil Mech (in Chinese), 2013(s2): 134?142.
[12] 卢星航, 史海滨, 李瑞平, 等. 基于NMR技术的盐渍化冻融土壤未冻水及孔隙水含量试验研究[J]. 水土保持学报, 2017, 31(2): 111?116.
LU Xinghang, SHI Haibin, LI Ruiping, et al. J Soil Water Conserv (in Chinese), 2017, 31(2): 111?116.
[13] 刘标, 姚素平, 胡文瑄, 等. 核磁共振冻融法表征非常规油气储层孔隙的适用性[J]. 石油学报, 2017, 38(12): 1401?1410.
LIU Biao, YAO Suping, HU Wenxuan, et al. Acta Petrolei Sin(in Chinese), 2017, 38(12): 1401?1410.
[14] 董宝中, 生文君, 李光城, 等. 同步辐射小角散射实验站[J]. 高能物理与核物理, 1995, 19(3): 284?288.
DONG Baozhong, SHENG WenJun, Li Guangcheng, et al. High Energy Phys Nucl Phys(in Chinese), 1995, 19(3): 284?288.
[15] 王凯峰, 林志茂, 杨颛维, 等. 高庙子膨润土胶体的基本性质[J]. 核化学与放射化学, 2018, 40(3): 189?195.
WANG Kaifeng, LIN Zhimao, YANG zhuanrui, et al. J Nucld Radiochem(in Chinese), 2018, 40(3): 189?195.
[16] 闫小庆, 房营光, 张平. 膨润土对土体微观孔隙结构特征影响的试验研究[J]. 岩土工程学报, 2011, 33(8): 1302?1307.
YAN Xiaoqing, FANG Yingguang, ZHANG Ping. Chin J Geotech Eng(in Chinese), 2011, 33(8): 1302?1307.
[17] 陈宝, 张会新, 陈萍. 高碱溶液入渗对GMZ膨润土微观孔隙结构的影响[J]. 浙江大学学报(工学版), 2013, 47(4): 602?608.
CHEN Bao, ZHANG Huixin, CHEN Ping. J Zhejiang Univ: Eng Sci(in Chinese), 2013, 47(4): 602?608.
[18] 项国圣, 徐永福, 谢胜华. 盐溶液对膨润土微观结构的影响[J]. 东南大学学报(自然科学版), 2016, 46(S1): 230?234.
XIANG Guosheng, XU Yongfu, XIE Shenghua. J Southeast Univ: Nat Sci(in Chinese), 2016, 46(S1): 230?234.
[19] GUINIER A, FOURNET G, WALKER C B, et al. Small-Angle Scattering of X-rays[M]. New York:John Wiley & Sons, 1955: 30?60.
[20] RADLINSKI A P, MASTALERZ Hinde A L, HAINBUCHNER R. Application of SAXS and SANS in evaluation of porosity, pore size distribution and surface area of coal[J]. Int J Coal Geol, 2004, 59(3): 245?271.
[21] LI Z H, GONG Y J, WU D, et al. A negative deviation from Porod’s law in SAXS of organo—MSU-X[J]. Micropor Mesopor Mater, 2001, 46(1): 75-80.
[22] ZHANG R, LIU S, WANG Y. Fractal evolution under in situ pressure and sorption conditions for coal and shale[J]. Sci Rep, 2017, 7(1): 8971?8982.
[23] RADLINSKI A P, MASTALERZ M, HINDE A L, et al. Application of SAXS and SANS in evaluation of porosity, pore size distribution and surface area of coal[J]. Int J Coal Geol, 2004, 59(3): 245?271.
[24] LI Z H. A program for SAXS data processing and analysis[J]. Chin Phys C, 2013, 37(10): 110?115.
[25] JELLINEK M H, SOLOMAN E, FANKUCHEN I. Measurement and analysis of small-angle X-ray scattering[J]. Ind Eng Chem Anal, 1946, 18(3): 172?175.
[26] BEAUCAGE G, KAMMLER H K, PRATSINIS S E. Particle size distributions from small-angle scattering using global scattering functions[J]. J Appl Crystallogr, 2004, 37(4): 523?535.
[27] SHULL C G, ROESS L C. X-ray scattering at small angles by finely-divided solids. I. General approximate theory and applications[J]. J Appl Phys, 1947, 18(3): 295?307.
[28] POTTON J A, DANIELL G J, RAINFORD B D. A new method for the determination of particle size distributions from small-angle neutron scattering measurements[J]. J Appl Crystallogr, 1988, 21(6): 891?897.
[29] OKOLO G N, EVERSON R C, NEOMAGUS H W J P, et al. Comparing the porosity and surface areas of coal as measured by gas adsorption, mercury intrusion and SAXS techniques[J]. Fuel, 2015, 141(141): 293?304.
[30] 陈辉, 胡元中, 王慧, 等. 粗糙表面分形特征的模拟及其表征[J]. 机械工程学报, 2006, 42(9): 219?223.
CHENG Hui, HU Yuanzhong, WANG Hui, et al. Chin J Mech Eng(in Chinese), 2006, 42(9): 219?223.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com