首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
通过In/Sb双掺杂优化SnTe基材料热电性能
作者:傅铁铮 沈家骏 忻佳展 朱铁军 赵新兵 
单位:(浙江大学材料科学与工程学院 杭州 310027) 
关键词:碲化锡 热电材料 共振掺杂 晶格热导率 
分类号:TB34
出版年,卷(期):页码:2019,47(10):0-0
DOI:
摘要:

 采用高温熔炼、热压烧结方法制备了p型SnTe基热电材料Sn0.995–xIn0.005SbxTe (x=0~0.16)并研究了其热电性能。In掺杂可以在SnTe中引入共振能级,态密度增加,使得室温Seebeck系数提升。此外,因为与Sn所带电荷不同,Sb的异价掺杂会产生大量自由电子,从而降低SnTe基材料过高的载流子浓度;而纳米尺度富Sb第二相散射也会让晶格热导率进一步降低,在825 K时获得最低晶格热导率约0.73 W/(m?K)。通过电学和热学的协同优化,整个温度区间的zT值都得到提升。其中,Sn0.915In0.005Sb0.08Te在825 K时获得zT最大值约1.1,说明该体系SnTe基材料在热电应用上有一定潜力。

基金项目:
国家自然科学基金项目(61534001,51871199)。
作者简介:
参考文献:

 [1] LI J, PAN Y, WU C, et al. Processing of advanced thermoelectric materials[J]. Sci China Technol Sc, 2017, 60(9): 1347–1364.

[2] ZHU T, LIU Y, FU C, et al. Compromise and synergy in high-efficiency thermoelectric materials[J]. Adv Mater, 2017, 29(14): 1605884.
[3] ZHAO L-D, KANATZIDIS M G. An overview of advanced thermoelectric materials[J]. J Materiomics, 2016, 2(2): 101–103.
[4] GUAN M-J, QIU P-F, SONG Q-F, et al. Improved electrical transport properties and optimized thermoelectric figure of merit in lithium-doped copper sulfides[J]. Rare Met, 2018, 37(4): 282–289.
[5] 胡慧珊, 杨君友, 辛集武, 等. SnO的歧化反应对SnTe热电性能的优化[J]. 无机材料学报, 2019, 34(3): 315–320.
HU H S, YANG J Y, XIN J W, et al. J Inorg Mater (in Chinese), 2019, 34(3): 315–320.
[6] WEI T-R, WU C-F, LI F, et al. Low-cost and environmentally benign selenides as promising thermoelectric materials[J]. J Materiomics, 2018, 4(4): 304–320.
[7] DONG J, SUN F-H, TANG H, et al. Medium-temperature thermoelectric GeTe: Vacancy suppression and band structure engineering leading to high performance[J]. Energy Environ Sci, 2019, 12: 1396–1403.
[8] ZHAI R, HU L, WU H, et al. Enhancing thermoelectric performance of n-type hot deformed bismuth-telluride-based solid solutions by nonstoichiometry-mediated intrinsic point defects[J]. ACS Appl Mater Interfaces, 2017, 9(34): 28577–28585.
[9] LIU R, TAN X, LIU Y C, et al. BiCuSeO as state-of-the-art thermoelectric materials for energy conversion: From thin films to bulks[J]. Rare Met, 2018, 37(4): 259–273.
[10] LI F, ZHAI R, WU Y, et al. Enhanced thermoelectric performance of n-type bismuth-telluride-based alloys via In alloying and hot deformation for mid-temperature power generation[J]. J Materiomics, 2018, 4(3): 208–14.
[11] ASFANDIYAR, LI Z, SUN F-H, et al. Enhanced thermoelectric properties of p-type SnS0.2Se0.8 solid solution doped with Ag[J]. J Alloy Compd, 2018, 745: 172–178.
[12] TAN G, SHI F, HAO S, et al. Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe–SrTe[J]. Nat Commun, 2016, 7: 12167.
[13] ZHANG J, WU D, HE D, et al. Extraordinary thermoelectric performance realized in n-type PbTe through multiphase nanostructure engineering[J]. Adv Mater, 2017, 29(39): 1703148.
[14] FU T, YUE X, WU H, et al. Enhanced thermoelectric performance of PbTe bulk materials with figure of merit zT>2 by multi-functional alloying[J]. J Materiomics, 2016, 2(2): 141–149.
[15] DONG J, WU C F, PEI J, et al. Lead-free MnTe mid-temperature thermoelectric materials: Facile synthesis, p-type doping and transport properties[J]. J Mater Chem C, 2018, 6(15): 4265–4272.
[16] ZHANG L, WANG J, CHENG Z, et al. Lead-free SnTe-based thermoelectrics: Enhancement of thermoelectric performance by doping with Gd/Ag[J]. J Mater Chem A, 2016, 4(20): 7936–7942.
[17] ZHAO L D, ZHANG X, WU H, et al. Enhanced thermoelectric properties in the counter-doped SnTe system with strained endotaxial SrTe[J]. J Am Chem Soc, 2016, 138(7): 2366–2373.
[18] MOSHWAN R, YANG L, ZOU J, et al. Eco-friendly SnTe thermoelectric materials: Progress and future challenges[J]. Adv Functl Mater, 2017, 27(43): 1703278.
[19] LI W, ZHENG L, GE B, et al. Promoting SnTe as an eco-friendly solution for p-PbTe thermoelectric via band convergence and interstitial defects[J]. Adv Mater, 2017, 29(17): 1605887.
[20] BREBRICK R F, STRAUSS A J. Anomalous thermoelectric power as evidence for two-valence bands in SnTe[J]. Phys Rev, 1963, 131(1): 104–110.
[21] ZHANG Q, LIAO B, LAN Y, et al. High thermoelectric performance by resonant dopant indium in nanostructured SnTe[J]. Proc Nat Acad Sci, 2013, 110(33): 13261–13266.
[22] HEREMANS J P, JOVOVIC V, TOBERER E S, et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states[J]. Science, 2008, 321(5888): 554–557.
[23] TAN G, SHI F, HAO S, et al. Codoping in SnTe: Enhancement of thermoelectric performance through synergy of resonance levels and band convergence[J]. J Am Chem Soc, 2015, 137(15): 5100–5112.
[24] 檀小芳, 端思晨, 王泓翔, 等. 多掺杂协同调控碲化锡热导率和功率因子提升热电性能[J]. 无机材料学报, 2019, 34(3): 335–340.
TAN X F, DUAN S C, WANG H X, et al. J Inorg Mater (in Chinese), 2019, 34(3): 335–340.
[25] TAN X, LIU G, XU J, et al. Thermoelectric properties of In-Hg co-doping in SnTe: Energy band engineering[J]. J Materiomics, 2018, 4(1): 62–67.
[26] BANIK A, SHENOY U S, ANAND S, et al. Mg alloying in SnTe facilitates valence band convergence and optimizes thermoelectric properties[J]. Chem Mater, 2015, 27(2): 581–587.
[27] AL RAHAL AL ORABI R, MECHOLSKY N A, HWANG J, et al. Band degeneracy, low thermal conductivity, and high thermoelectric figure of merit in SnTe–CaTe alloys[J]. Chem Mater, 2016, 28(1): 376–384.
[28] PEI Y, ZHENG L, LI W, et al. Interstitial point defect scattering contributing to high thermoelectric performance in SnTe[J]. Adv Electron Mater, 2016, 2(6): 1600019.
[29] BANIK A, VISHAL B, PERUMAL S, et al. The origin of low thermal conductivity in Sn1−xSbxTe: Phonon scattering via layered intergrowth nanostructures[J]. Energy Environ Sci, 2016, 9(6): 2011–2019.
[30] YANG S H, ZHU T J, SUN T, et al. Nanostructures in high-performance (GeTe)x(AgSbTe2)100−x thermoelectric materials[J]. Nanotechnol, 2008, 19(24): 245707.
[31] LI W, CHEN Z, LIN S, et al. Band and scattering tuning for high performance thermoelectric Sn1−xMnxTe alloys[J]. J Materiomics, 2015, 1(4): 307–315.
[32] PEI Y, LALONDE A, IWANAGA S, et al. High thermoelectric figure of merit in heavy hole dominated PbTe[J]. Energy Environ Sci, 2011, 4(6): 2085–2089.
[33] ZHU B L, XIE C S, ZENG D W, et al. Investigation of gas sensitivity of Sb-doped ZnO nanoparticles[J]. Mater Chem Phys, 2005, 89(1): 148–153.
[34] WANG D, ZHANG X, YU Y, et al. Enhancing thermoelectric performance of SnTe via stepwisely optimizing electrical and thermal transport properties[J]. J Alloy Compd, 2019, 773: 571–584.
[35] ZHOU M, GIBBS Z M, WANG H, et al. Optimization of thermoelectric efficiency in SnTe: The case for the light band[J]. Phys Chem Chem Phys, 2014, 16(38): 20741–20748.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com