首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
Pt/SrRuO3/Bi0.975La0.025Fe0.975Ni0.025O3/Pt薄膜电容器的光伏效应
作者:彭增伟1 刘保亭2 
单位:(1. 华北电力大学科技学院 河北 保定 071051 2. 河北大学物理科学与技术学院 河北 保定 071002) 
关键词:镧和镍共掺 铁酸铋 光伏效应 厚度依赖性 极化转换 
分类号:0472+.8; 0484.4+1
出版年,卷(期):页码:2019,47(10):0-0
DOI:
摘要:

 采用溶胶?凝胶法在Pt(111)/Ti/SiO2/Si(001)基片上制备了厚度分别为240、360、480和600 nm的多晶La和Ni共掺的Bi0.975La0.025Fe0.975Ni0.025O3(BLFNO)薄膜,并以Pt/SrRuO3(SRO)为复合上电极构建了Pt/SRO/BLFNO/Pt薄膜电容器。用波长为404 nm、强度为5 mW/cm2的紫光作为光源测试了Pt/SRO/BLFNO/Pt薄膜电容器的光伏效应。实验发现:Pt/SRO/BLFNO/Pt薄膜电容器的光电流随极化的翻转而反转;此外,Pt/SRO/BLFNO/Pt薄膜电容器的光伏效应还体现了对BLFNO薄膜厚度依赖性。开路电压随厚度的增加而增大,短路电流密度随厚度的增加而减小。当上电极Pt/SRO的电势高于底电极Pt时,开路电压分别为?0.08、?0.10、?0.13和?0.35 V,短路电流密度分别为6.72、5.71、0.83和0.61 μA/cm2;当上电极Pt/SRO的电势低于底电极Pt时,开路电压分别为0.07、0.09、0.10和0.27 V,短路电流密度分别为?5.75、?4.38、?0.92和?0.28 μA/cm2。通过对Pt/SRO/BLFNO/Pt薄膜电容器光伏效应的分析发现,极化起着主导作用。

 
基金项目:
中央高校基本科研业务费专项资金(2016MS157);国家自然科学基金(11374086)项目;河北省自然科学基金(A2018201168)项目。
作者简介:
参考文献:

 [1] BASU S R, MARTIN L W, CHU Y-H, et al. Photoconductivity in BiFeO3 thin films[J]. Appl Phys Lett, 2008, 92: 091905.

[2] ZHU M, ZHENG H, ZHANG J, et al. Polarization dependent ferroelectric photovoltaic effects in BFTO/CuO thin films[J]. Appl Phys Lett, 2017, 111: 032901.
[3] JI W, YAO K and LIANG Y C. Bulk photovoltaic effect at visible wavelength in epitaxial ferroelectric BiFeO3 thin films[J]. Adv Mater, 2010, 22: 1763?1766.
[4] CHEN B, LI M, LIU Y W, et al. Effect of top electrodes on photovoltaic properties of polycrystalline BiFeO3 based thin films capacitors[J]. Nanotechnology, 2011, 22: 195201.
[5] KATIYAR R K, KUMAR A, MORELL G, et al. Photovoltaic effect in a wide-area semiconductir-ferroelectric device[J]. Appl Phys Lett, 2011, 99: 092906.
[6] LI H, JIN K X, YANG S H, et al. Ultraviolet photovoltaic effect in BiFeO3/Nb-SrTiO3 heterostructure[J]. J Appl Phys, 2012, 112:  083506.
[7] PENG Z W, LIU B T. Abnormal capacitance-voltage and switchable photovoltaic effect of epitaxial Mn-doped BiFeO3 thin film capacitor[J]. Funct Mater Lett, 2015, 8(5): 1550057.
[8] GUPTA S, TOMAR M, GUPTA V. Ferroelectric photovoltaic properties of Ce and Mn codoped BiFeO3 thin film[J]. J Appl Phys, 2014, 115: 014102.
[9] GAO R L, YANG H W, CHEN Y S, et al. Mechanism of switchable and nonswitchable short-circuit photocurrent accompanying polarization switching in Bi0.9La0.1FeO3 thin films[J]. Europhys Lett, 2014, 105: 37008.
[10] YANG S Y, MARTIN L W, BYRNES S J, et al. Photovoltaic effects in BiFeO3[J]. Appl Phys Lett, 2009, 95: 062909.
[11] ZANG Y Y, XIE D, WU X, et al. Enhanced photovoltaic properties in grapheme/polycrystalline BiFeO3/Pt heterojunction[J]. Appl Phys Lett, 2011, 99: 132904.
[12] YANG S Y, SEIDEL J, BYRNES S J P, et al. Above-bandgap voltages from ferroelectric photovoltaic devices[J]. Nat Nanotechnol, 2010, 5: 143?147.
[13] SEIDEL J, FU D, YANG S Y, E. et al. Efficient photovoltaic current generation at ferreelectric domain walls[J]. Phys Rev Lett, 2011, 107: 126805.
[14] YI H T, CHOI T, CHOI S G, et al. Mechanism of the switchable photovoltaic effect in ferroelectric BiFeO3[J]. Adv Mater, 2011, 23: 3403?3407.
[15] GUO Y, GUO B, DONG W, et al. Evidence for oxygen vacancy or ferroelectric polarization induced switchable diode and photovoltaic effects in BiFeO3 based thin films[J]. Nanotechnology, 2013, 24: 275201.
[16] MATSUO H, KITANAKA Y, INOUE R, et al. Cooperative effect of oxygen-vacancy-rich and ferroelectric polarization on photovoltaic properties in BiFeO3 thin film capacitors[J]. Appl Phys Lett, 2016, 108: 032901.
[17] BISWAS P P, CHINTHAKUNTLA T, DURAISAMY D, et al. Photovoltaic and photo-capacitance effects in ferroelectric BiFeO3 thin film[J]. Appl Phys Lett, 2017, 110: 192906.
[18] WU F, GUO Y, GUO B, et al. Photovoltaic effect of a bilayer thin film with (Na0.5Bi0.5)1–xBaxTiO3/BiFeO3 heterostructure[J]. J Phys D: Appl Phys, 2013, 46: 365304.
[19] TU C S, HUNG C M, XU Z R, et al. Calcium-doping effects on photovoltaic response and structure in multiferroic BiFeO3 ceramics[J]. J Appl Phys, 2013, 114: 124105.
[20] HUNG C M, TU C S, XU Z R, et al. Effect of diamagnetic barium substitution on magnetic and photovoltaic properties in multiferroic BiFeO3[J]. J Appl Phys, 2014, 115: 17D901.
[21] TU C S, CHEN P Y, CHEN C S, et al. Tailoring microstructure and photovoltaic effect in multiferroic Nb-substituted BiFeO3 ceramics by processing atmosphere modification[J]. J Eur Ceram Soc, 2018, 38(4): 1389?1398.
[22] ZHANG. L, CHEN J, FAN L, et al. Enhanced switchable photovoltaic response and ferromagnetic of Co-doped BiFeO3 based ferroelectric thin films[J], J Alloy Compd. 2018, 742: 351?55.
[23] 彭增伟,刘保亭. 上电极对镧镍共掺铁酸铋薄膜电学性质的影响[J]. 硅酸盐学报 2018, 46(7): 972?977.
PENG Zengwei, LIU Baoting. J CHin Ceram Soc, 2018, 46(7): 972?977.
[24] SINGH S K, MARUYAMA K, ISHIWARA H. Reduced leakage current in La and Ni co-doped BiFeO3 thin films[J]. Appl Phys Lett, 2007, 91: 112913.
[25] PENG. Z. W, WANG Y. L. LIU B. T, Evidence of interface dominated photovoltaic effect of Pt-sandwiched polycrystalline BiFeO3 thin film capacitor[J]. Mater Sci Semicond Process, 2015, 35:115?119.
[26] CLARK S J, ROBERTON J. Band gap and schottky barrier heights of multiferroic BiFeO3[J]. Appl Phys Lett, 2007, 90: 132903.
[27] QIN M, YAO K, LIANG Y C. Photovoltaic characteristics in pilystalline and epitaxial (Pb0.97La0.03)(Zr0.52Ti0.48)O3 ferroelectric thin films sandwiched between different top and bottom electrodes[J]. J Appl Phys, 2009, 105: 061624.
[28] ZHENG F, XU J, FANG L, et al. Separation of the schottky barrier and polarization effects on photocurrent of Pt sandwiched Pb(Zr0.20Ti0.82)O3 films[J]. Appl Phys Lett, 2008, 93: 172101.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com