首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
碳蜂窝结构力学性能的分子动力学研究
作者:  安豪杰   范文宝   
单位:(北京科技大学机械工程学院 北京 100083) 
关键词:碳蜂窝 分子动力学模拟 力学性能 各向异性 
分类号:TB383
出版年,卷(期):页码:2019,47(10):0-0
DOI:
摘要:

 采用分子动力学方法系统地研究了碳蜂窝结构在不同方向、温度和应变速率下的拉伸力学性能。结果表明:碳蜂窝结构为各向异性材料,其管轴方向强度最高,常温下(300 K)达到553 GPa,Young’s模量更是达到5 300 GPa,是另2个方向的10倍以上;碳蜂窝在扶手椅方向上的最大失效应变达到了0.321 2,具有相当好的延展性;温度对力学性能影响明显,在一定范围内降低温度会显著提升最大拉伸强度。

 
基金项目:
国家自然科学基金(51375041,21703007);中央高校基本科研业务费(FRF-TP-16-044A1)。
作者简介:
参考文献:

 [1] GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nat Mater, 2007, 6: 183.

[2] 叶振强, 曹炳阳, 过增元. 石墨烯的声子热学性质研究[J]. 物理学报, 2014, 63(15): 303–309.
YE Zhengqian, CAO Bingyang, GUO Zengyuan. Acta Phys Sin (in Chinese), 2014, 63(15): 303–309.
[3] 王宇, 王秀喜, 倪向贵, 等. 单壁碳纳米管轴向压缩变形的研究[J]. 物理学报, 2003(12): 3120–3124.
WANG Yu, WANG Xiuxi, NI Xianggui, et al. Acta Phys Sin (in Chinese), 2003(12): 3120–3124. 
[4] PONCHARAL P. Electrostatic deflections and electromechanical resonances of carbon nanotubes[J]. Science, 1999, 283(5407): 1513–1516.
[5] TREACY M M J, EBBESEN T W, GIBSON J M. Exceptionally high Young's modulus observed for individual carbon nanotubes[J]. Nature, 1996, 381: 678.
[6] DIKIN D A, STANKOVICH S, ZIMNEY E J, et al. Preparation and characterization of graphene oxide paper[J]. Nature, 2007, 448: 457.
[7] GUO S J, YANG Q S, HE X Q, et al. Design of 3D carbon nanotube-based nanostructures and prediction of their extra-strong mechanical properties under tension and compression[J]. Comp Mater Sci, 2014, 85: 324–331.
[8] LIU X, LU W, AYALA O M, et al. Microstructural evolution of carbon nanotube fibers: Deformation and strength mechanism[J]. Nanoscale, 2013, 5(5): 2002–2008.
[9] PARK N, IHM J. Electronic structure and mechanical stability of the graphitic honeycomb lattice[J]. Phys Rev B, 2000, 62(11): 7614–7618.
[10] CHEN Y, XIE Y, GAO Y, et al. Nexus networks in carbon honeycombs[J]. Phys Rev Mater, 2018, 2(4): 044205. 
[11] WANG S, WU D, YANG B, et al. Semimetallic carbon honeycombs: New three-dimensional graphene allotropes with Dirac cones[J]. Nanoscale, 2018, 10(6): 2748–2754.
[12] KRAINYUKOVA N V. Capturing gases in carbon honeycomb[J]. J Low Temp Phys, 2016, 187(1/2): 90–104.
[13] HU J, WU W, ZHONG C, et al. Three-dimensional honeycomb carbon: Junction line distortion and novel emergent fermions[J]. Carbon, 2019, 141: 417–426.
[14] KUC A, SEIFERT G. Hexagon-preserving carbon foams: Properties of hypothetical carbon allotropes[J]. Phys Rev B, 2006, 74(21): 214104.
[15] KRAINYUKOVA N V, ZUBAREV E N. Carbon honeycomb high capacity storage for gaseous and liquid species[J]. Phys Rev Lett, 2016, 116(5): 055501.
[16] PANG Z, GU X, WEI Y, et al. Bottom-up design of three-dimensional carbon-honeycomb with superb specific strength and high thermal conductivity[J]. Nano Lett, 2017, 17(1): 179–185.
[17] ZHANG Z, KUTANA A, YANG Y, et al. Nanomechanics of carbon honeycomb cellular structures[J]. Carbon, 2017, 113: 26–32.
[18] WEI Z, YANG F, BI K, et al. Thermal transport properties of all-sp2 three-dimensional graphene: Anisotropy, size and pressure effects[J]. Carbon, 2017, 113: 212–218.
[19] GAO Y, CHEN Y, ZHONG C, et al. Electron and phonon properties and gas storage in carbon honeycombs[J]. Nanoscale, 2016, 8(26): 12863–12868.
[20] ZHANG J, WANG C. Buckling of carbon honeycombs: A new mechanism for molecular mass transportation[J]. J Phys Chem C, 2017, 121(14): 8196–8203.
[21] GU X, PANG Z, WEI Y, et al. On the influence of junction structures on the mechanical and thermal properties of carbon honeycombs[J]. Carbon, 2017, 119: 278–286.
[22] PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. J Comput Phys, 1995, 117(1): 1–19.
[23] STUKOWSKI A. Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool[J]. Model Simul Mater Sc, 2010, 18(1): 015012.
[24] DONALD W B, OLGA A S, JUDITH A H, et al. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons[J]. J Phys-Condens Mater, 2002, 14(4): 783.
[25] DENG B, HOU J, ZHU H, et al. The normal-auxeticity mechanical phase transition in graphene[J]. 2D Mater, 2017, 4(2): 021020.
[26] EVANS D J, HOLIAN B L. The Nose–Hoover thermostat[J]. J Chem Phys, 1985, 83(8): 4069–4074.
[27] TUCKERMAN M E , ALEJANDRE J, ROBERTO L-R, et al. A Liouville-operator derived measure-preserving integrator for molecular dynamics simulations in the isothermal-isobaric ensemble[J]. J Phys A-Math Theor, 2006, 39(19): 5629.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com