首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
用于超级电容器的煤基活性炭电极材料的研究进展
作者:    杨绍斌   
单位:(辽宁工程技术大学材料科学与工程学院 辽宁 阜新 123000) 
关键词:煤基活性炭 超级电容器 电化学性能 
分类号:O646
出版年,卷(期):页码:2019,47(10):0-0
DOI:
摘要:

 活性炭电极材料广泛的应用于超级电容器中,制备活性炭的前驱体种类繁多,其中煤炭是优质的活性炭前驱体,它的含碳量高、储量丰富且价格低廉。以煤为前驱体制备活性炭可以拓宽煤的应用领域,提高煤炭附加值。综述了最新煤基活性炭电极材料的研究进展,分析了煤基活性炭性质对超级电容器电性能的影响,最后对煤基活性炭未来的研究方向以及发展前景提出了展望。

基金项目:
国家自然科学基金(51274119,51774175)。
作者简介:
参考文献:

 [1] KWON S H, LEE E, KIM B S, et al. Activated carbon aerogel as electrode material for coin-type EDLC cell in organic electrolyte[J]. Curr Appl Phys, 2014, 14(4): 603–607. 

[2] KRISHNAMOORTHY K, THANGAVEL S, VEETIL J C, et al. Graphdiyne nanostructures as a new electrode material for electrochemical supercapacitors[J]. Int J Hydrogen Energy, 2016, 41(3): 1672–1678. 
[3] AN G H, AHN H J. Activated porous carbon nanofibers using Sn segregation for high-performance electrochemical capacitors[J]. Carbon, 2013, 65: 87–96. 
[4] WEI Y Z, FANG B, IWASA S, et al. A novel electrode material for electric double-layer capacitors[J]. J Power Sources, 2005, 141(2): 386–391. 
[5] GRYGLEWICZ G, MACHNIKOWSKI J, LORENC-GRABOWSKA E, et al. Effect of pore size distribution of coal-based activated carbons on double layer capacitance[J]. Electrochim Acta, 2005, 50(5): 1197–1206. 
[6] DOLAH B N M, DERAMAN M, OTHMAN M A R, et al. A method to produce binderless supercapacitor electrode monoliths from biomass carbon and carbon nanotubes[J]. Mater Res Bull, 2014, 60: 10–19. 
[7] YE R, XIANG C, LIN J, et al. Coal as an abundant source of graphene quantum dots[J]. Nat commun, 2013, 4: 2943. 
[8] MATHEWS J P, CHAFFEE A L. The molecular representations of coal—a review[J]. Fuel, 2012, 96: 1–14. 
[9] DONG Y, LIN J, CHEN Y, et al. Graphene quantum dots, graphene oxide, carbon quantum dots and graphite nanocrystals in coals[J]. Nanoscale, 2014, 6(13): 7410–7415. 
[10] HU S, WEI Z, CHANG Q, et al. A facile and green method towards coal-based fluorescent carbon dots with photocatalytic activity[J]. Appl Surf Sci, 2016, 378: 402–407. 
[11] 马俊斯. 煤基活性炭的制备与电化学性能表征[J]. 煤炭加工与综合利用, 2014 (1): 57–60. 
MA Junsi. Coal Process Compr Util (in Chinese), 2014 (1): 57–60. 
[12] ZHANG L L, ZHAO X S. Carbon-based materials as supercapacitor electrodes[J]. Chem Soc Rev, 2009, 38(9): 2520–2531. 
[13] LI S, FAN Z. Nitrogen-doped carbon mesh from pyrolysis of cotton in ammonia as binder-free electrodes of supercapacitors[J]. Micropor Mesopor Mater, 2019, 274: 313–317. 
[14] CHEN H, GUO Y, WANG F, et al. An activated carbon derived from tobacco waste for use as a supercapacitor electrode material[J]. Carbon, 2018, 130: 848. 
[15] XU Z, CHEN J, ZHANG X, et al. Template-free preparation of nitrogen-doped activated carbon with porous architecture for high-performance supercapacitors[J]. Micropor Mesopor Mater, 2019, 276: 280–291. 
[16] ZHANG D, ZHAO J, FENG C, et al. Scalable synthesis of hierarchical macropore-rich activated carbon microspheres assembled by carbon nanoparticles for high rate performance supercapacitors[J]. J Power Sources, 2017, 342: 363–370. 
[17] WU S, CHEN G, KIM N Y, et al. Creating pores on graphene platelets by low-temperature KOH activation for enhanced electrochemical performance[J]. Small, 2016, 12(17): 2376–2384. 
[18] HE X, MA H, WANG J, et al. Porous carbon nanosheets from coal tar for high-performance supercapacitors[J]. J Power Sources, 2017, 357: 41–46. 
[19] PENG Z, GUO Z, CHU W, et al. Facile synthesis of high-surface-area activated carbon from coal for supercapacitors and high CO2 sorption[J]. RSC Adv, 2016, 6(48): 42019–42028. 
[20] ENDO M, TAKEDA T, KIM Y J, et al. High power electric double layer capacitor (EDLC's); from operating principle to pore size control in advanced activated carbons[J]. Carbon Lett, 2001, 1(3/4): 117–128. 
[21] ZHANG L L, ZHAO X S. Carbon-based materials as supercapacitor electrodes[J]. Chem Soc Rev, 2009, 38(9): 2520–2531. 
[22] GONZÁLEZ A, GOIKOLEA E, BARRENA J A, et al. Review on supercapacitors: Technologies and materials[J]. Renew Sust Energy Rev, 2016, 58: 1189–1206. 
[23] GENG W, MA F, WU G, et al. MgO-templated hierarchical porous carbon sheets derived from coal tar pitch for supercapacitors[J]. Electrochim Acta, 2016, 191: 854–863. 
[24] HE X, ZHAO N, QIU J, et al. Synthesis of hierarchical porous carbons for supercapacitors from coal tar pitch with nano-Fe2O3 as template and activation agent coupled with KOH activation[J]. J Mater Chem A, 2013, 1(33): 9440–9448. 
[25] HE X, LI X, MA H, et al. ZnO template strategy for the synthesis of 3D interconnected graphene nanocapsules from coal tar pitch as supercapacitor electrode materials[J]. J Power Sources, 2017, 340: 183–191. 
[26] HE X, LI X, WANG X, et al. Efficient preparation of porous carbons from coal tar pitch for high performance supercapacitors[J]. New Carbon Mater, 2014, 29(6): 493–502. 
[27] QIN B, WANG Q, ZHANG X, et al. One-pot synthesis of interconnected porous carbon derived from coal tar pitch and cellulose for high-performance supercapacitors[J]. Electrochim Acta, 2018, 283: 655–663. 
[28] WANG Q, YAN J, WANG Y, et al. Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors[J]. Carbon, 2014, 67: 119–127. 
[29] CENTENO T A, SEREDA O, STOECKLI F. Capacitance in carbon pores of 0. 7 to 15 nm: A regular pattern[J]. Phys Chem Chem Phys, 2011, 13(27): 12403–12406. 
[30] CHMIOLA J, YUSHIN G, GOGOTSI Y, et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer[J]. Science, 2006, 313: 1760–1763. 
[31] SIMON P, BURKE A F. Nanostructured carbons: Double-layer capacitance and more[J]. Electrochem Soc Inter, 2008, 17(1): 38. 
[32] LARGEOT C, PORTET C, CHMIOLA J, et al. Relation between the ion size and pore size for an electric double-layer capacitor[J]. J Am Chem Soc, 2008, 130(9): 2730–2731. 
[33] RAYMUNDO-PINERO E, KIERZEK K, MACHNIKOWSKI J, et al. Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes[J]. Carbon, 2006, 44(12): 2498–2507. 
[34] HAO P, ZHAO Z, TIAN J, et al. Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode[J]. Nanoscale, 2014, 6(20): 12120–12129. 
[35] LIU Y. One-pot hydrothermal synthesis of nitrogen-doped hierarchically porous carbon monoliths for supercapacitors[J]. J Por- ous Mater, 2014, 21(6): 1009–1014. 
[36] HUANG C C, CHEN Y Z. Electrochemical performance of supercapacitors with KOH activated mesophase carbon microbead electrodes[J]. J Taiwan Inst Chem Eng, 2013, 44(4): 611–616. 
[37] XIE X, HE X, SHAO X, et al. Synthesis of layered microporous carbons from coal tar by directing, space-confinement and self-sacrificed template strategy for supercapacitors[J]. Electrochim Acta, 2017, 246: 634–642. 
[38] WANG L, WANG R, ZHAO H, et al. High rate performance porous carbon prepared from coal for supercapacitors[J]. Mater Lett, 2015, 149: 85–88. 
[39] LEE H C, BYAMBA-OCHIR N, SHIM W G, et al. High-performance supercapacitors based on activated anthracite with controlled porosity[J]. J Power Sources, 2015, 275: 668–674. 
[40] XING B L, GUO H, CHEN L J, et al. Lignite-derived high surface area mesoporous activated carbons for electrochemical capacitors[J]. Fuel Process Technol, 2015, 138: 734–742. 
[41] XIE X, HE X, ZHANG H, et al. Interconnected sheet-like porous carbons from coal tar by a confined soft-template strategy for supercapacitors[J]. Chem Eng J, 2018, 350: 49–56. 
[42] WANG L, SUN F, GAO J, et al. A novel melt infiltration method promoting porosity development of low-rank coal derived activated carbon as supercapacitor electrode materials[J]. J Taiwan Inst Chem Eng, 2018, 91: 588–596. 
[43] PIETRZAK R, JUREWICZ K, NOWICKI P, et al. Microporous activated carbons from ammoxidised anthracite and their capacitance behaviours[J]. Fuel, 2007, 86(7/8): 1086–1092. 
[44] ZHANG C, LONG D, XING B, et al. The superior electrochemical performance of oxygen-rich activated carbons prepared from bituminous coal[J]. Electrochem Commun, 2008, 10(11): 1809–1811. 
[45] GUAN T, LI K, ZHAO J, et al. Template-free preparation of layer-stacked hierarchical porous carbons from coal tar pitch for high performance all-solid-state supercapacitors[J]. J Mater Chem A, 2017, 5(30): 15869–15878. 
[46] FENG Y, HUANG H, YANG W, et al. Sulfur-doped microporous carbons developed from coal for enhanced capacitive performances of supercapacitor electrodes[J]. Integr Ferroelectr, 2018, 188(1): 44–56. 
[47] JUREWICZ K, PIETRZAK R, NOWICKI P, et al. Capacitance behaviour of brown coal based active carbon modified through chemical reaction with urea[J]. Electrochim Acta, 2008, 53(16): 5469–5475. 
[48] WANG D, WANG Y, CHEN Y, et al. Coal tar pitch derived N-doped porous carbon nanosheets by the in-situ formed g-C3N4 as a template for supercapacitor electrodes[J]. Electrochim Acta, 2018, 283: 132–140. 
[49] 陆倩, 徐园园, 木沙江, 等. 不粘煤基活性炭作超级电容器电极材料: 硼, 氮掺杂对其电化学性能的影响[J]. 新型碳材料, 2017, 32(5): 442–450. 
LU Qian, XU Yuanyuan, MU Shajiang, et al. New Carbon Mater (in Chinese), 2017, 32(5): 442–450. 
[50] ZHONG C, GONG S, JIN L, et al. Preparation of nitrogen-doped pitch-based carbon materials for supercapacitors[J]. Mater Lett, 2015, 156: 1–6. 
[51] PIETRZAK R, JUREWICZ K, NOWICKI P, et al. Nitrogen-enriched bituminous coal-based active carbons as materials for supercapacitors[J]. Fuel, 2010, 89(11): 3457–3467. 
[52] SUN F, GAO J, YANG Y, et al. One-step ammonia activation of Zhundong coal generating nitrogen-doped microporous carbon for gas adsorption and energy storage[J]. Carbon, 2016, 109: 747–754. 
[53] WANG L, WANG J, JIA F, et al. Nanoporous carbon synthesised with coal tar pitch and its capacitive performance[J]. J Mater Chem A, 2013, 1(33): 9498–9507. 
[54] GUO M, GUO J, TONG F, et al. Hierarchical porous carbon spheres constructed from coal as electrode materials for high performance supercapacitors[J]. RSC Adv, 2017, 7(72): 45363–45368. 
[55] ZHAO X Y, HUANG S S, CAO J P, et al. KOH activation of a hypercoal to develop activated carbons for electric double-layer capacitors[J]. J Anal Appl Pyrol, 2014, 105: 116–121. 
[56] LI L, WANG X, WANG S, et al. Activated carbon prepared from lignite as supercapacitor electrode materials[J]. Electroanal, 2016, 28(1): 243–248. 
[57] 王凯, 高超, 李松恩, 等. 煤质沥青基超级活性炭的提质处理及其电化学性能的研究[J]. 新型碳材料, 2018, 33(6): 562–570. 
WANG Kai, GAO Chao, LI Songen, , et al. New Carbon Mater (in Chinese), 2018, 33(6): 562–570. 
[58] 徐园园, 陆倩, 木沙江, 等. 煤基多孔炭的制备及其在超级电容器中的应用[J]. 煤炭转化, 2016, 39(1): 76–81. 
XU Yuanyuan, LU Qian, MU Shajiang, et al. Coal Convers (in Chinese), 2016, 39(1): 76–81. 
[59] 樊丽华, 王晓柳, 侯彩霞, 等. 褐煤基活性炭和无灰煤基活性炭性能对比研究[J]. 功能材料, 2017, 48(1): 1244–1248. 
FAN Lihua, WANG Xiaoliu, HOU Caixia, et al. J Funct Mater (in Chinese), 2017, 48(1): 1244–1248. 
[60] CHANG P, QIN Z. Hierarchical porous carbon materials with ultrahigh specific surface area prepared from coal supercapacitors[J]. Carbon Lett, 2018, 25(1): 117–121.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com