首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
压汞后水泥基材料的孔隙结构变化
作者:王小虎   吉克尼都   
单位:(浙江大学建筑工程学院 杭州 310058) 
关键词:水泥净浆 压汞 X射线断层扫描技术 孔隙结构 
分类号:TU528
出版年,卷(期):页码:2019,47(11):0-0
DOI:
摘要:

 压汞法是表征水泥基材料孔隙结构最为常用的方法之一,但在高压作用下,水泥基材料的孔隙结构可能发生显著变化。利用XCT研究压汞前后水泥净浆的孔隙结构变化,结果表明:水泥净浆进汞孔隙分布曲线符合5阶段进汞特征;汞能够显著增加孔隙的X射线吸收率,导致压汞前后XCT图像灰度反转;分析显示水泥净浆压汞后孔隙尺寸增加,数量减少,表明材料压汞前后孔隙结构发生改变。结果直接证明了压汞过程对水泥基材料孔隙结构的破坏作用。

基金项目:
作者简介:
参考文献:

 [1] DIAMOND S. Mercury porosimetry: an inappropriate method for the measurement of pore size distributions in cement-based materials[J]. Cem Concr Res, 2000, 30: 1517–1525.

[2] ZHANG Y, YANG B, YANG Z, et al. Ink-bottle effect and pore size distribution of cementitious materials identified by pressurization–depressurization cycling mercury intrusion porosimetry[J]. Materials, 2019, 12(9): 1454.
[3] ZHOU J, YE G, BREUGEL KV. Characterization of pore structure in cement-based materials using pressurization depressurization cycling mercury intrusion porosimetry (PDC-MIP)[J]. Cem Concr Res, 2010, 40: 1120–1128.
[4] ZUO Y, YE G. Pore structure characterization of sodium hydroxide activated slag using mercury intrusion porosimetry, nitrogen adsorption, and image analysis[J]. Materials, 2018, 11(6): 1035–.
[5] ZENG Q, LI K, FENG-CHONG T, et al. Pore structure characterization of cement pastes blended with 355 high-volume fly-ash[J]. Cem Concr Res, 2012, 42: 194–204.
[6] MULLER A C A, SCRIVENER K L. A reassessment of mercury intrusion porosimetry by comparison with 1H NMR relaxometry[J]. Cem Concr Res, 2017, 100: 350–360.
[7] FELDMAN R F. Pore structure damage in blended cements caused by mercury intrusion[J]. J Am Ceram Soc, 1984, 390 67(1): 30–33.
[8] OLSON R A, NEUBAUER C M, JENNINGS H M. Damage to the pore structure of hardened Portland cement 392 paste by mercury intrusion[J]. J Am Ceram Soc, 1997, 80(9): 2454–2458.
[9] 吴泽弘, 魏亚, 杨敏, 等. X射线CT技术在矿渣-水泥复合体系水化度量化中的应用[J]. 硅酸盐学报, 2018, 46(11): 1622–1631.
WU Zehong, WEI Ya, YANG Min, et al. J Chin Ceram Soc, 2018, 46(11): 1622–1631.
[10] CHANTLER C T. Detailed tabulation of atomic form factors, photoelectric absorption and scattering cross section, and mass attenuation coefficients in the vicinity of absorption edges in the soft X-ray (Z=30–36, Z=60–89, E=0.1 keV-10 keV), addressing convergence issues of earlier work[J]. J Phys Chem Ref Data, 2000, 29(4): 597–1056.
[11] GALLE C. Effect of drying on cement-based materials pore structure as identified by mercury intrusion porosimetry: a comparative study between oven-, vacuum-, and freeze-drying[J]. Cem Concr Res, 2001, 31(10): 1467–1477.
[12] HEARN H, HOOTON R D. Sample mass and dimension effects on mercury intrusion porosimetry results[J]. Cem Concr Res, 1992, 22(5): 970–980.
[13] MA H. Mercury intrusion porosimetry in concrete technology: tips in measurement, pore structure parameter acquisition and application[J]. J Porous Mater, 2014, 21:207–215.
[14] JENNINGS H M. Refinements to colloid model of CSH in cement: CM-II[J]. Cem Concr Res, 2008, 38(3): 275–289.
[15] WASHBURN E W. Note on a method of determining the distribution of pore sizes in a porous material[J]. Proc Nat Acad Sci USA, 1921, 7: 115–116.
[16] ZENG Q, WANG X, YANG P, et al. Tracing mercury entrapment in porous cement paste after mercury intrusion test by X-ray computed tomography and implications for pore structure characterization[J]. Mater Charact, 2019, 151: 203–215.
[17] ZENG Q, LI K, FENG-CHONG T, et al. Analysis of pore structure, contact angle and pore entrapment of blended cement pastes from mercury porosimetry data[J]. Cem Concr Compos, 2012, 34: 1053–1061.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com