首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
碱含量对新拌水泥浆体流变性能的影响
作者:  阎培渝 
单位:(清华大学土木工程系 北京 100084) 
关键词:碱含量 水泥 聚羧酸减水剂 流变性能 钾石膏 饱和吸附量 
分类号:TQ172.1
出版年,卷(期):页码:2019,47(11):0-0
DOI:
摘要:

 通过外掺硫酸钾的方式来调整不同矿物组成水泥中的碱含量,研究了碱含量对水泥/聚羧酸减水剂体系的流动度及流变性能的影响,分析了水化初期水化产物的物相、形貌及化学组成,测定了不同碱含量条件下水泥对聚羧酸减水剂的吸附量。结果表明:碱含量增加,新拌水泥浆体的流动度减小,屈服应力与塑性黏度增大。低铝酸三钙(C3A)含量水泥的流变性能对碱含量的变化更为敏感,外掺硫酸碱对浆体流变性能的影响程度大于熟料中固溶的碱。水泥中高的碱含量抑制了水化初期钙矾石的生成,过渡性水化产物钾石膏生成量增加,尤其是低C3A含量的水泥浆体中迅速出现大量板状钾石膏晶体,导致其流变性能急剧下降。碱含量增加,水泥对聚羧酸减水剂的饱和吸附量增加,低C3A含量的水泥对聚羧酸减水剂的饱和吸附量增加尤为明显。

基金项目:
国家重点研发计划资助(2017YFB0310101);国家自然科学基金项目(51878381)。
作者简介:
参考文献:

 [1] JIANG S, KIM B, AITCIN P. Importance of adequate soluble alkali content to ensurecement/superplasticizer compatibility[J]. Cem Concr Res, 1999, 29(1): 71–78.

[2] KIM B, JIANG S, JOLICOEUR C, et al. The adsorption behavior of PNS superplasticizer and its relation to fluidity of cement paste[J]. Cem Concr Res, 2000, 30(6): 887–893.
[3] 何燕, 张雄, 王义廷, 等. 碱金属盐对萘系减水剂吸附–分散性能的影响[J]. 建筑材料学报, 2016, 19(2): 347–351.
HE Yan, ZHANG Xiong, WANG Yiting, et al. J Build Mater (in Chinese), 2016, 19(2): 347–351.
[4] 阎培渝, 王悦. 可溶碱对水泥/氨基磺酸盐减水剂相容性的影响[J]. 建筑材料学报, 2006(5): 576–580.
YAN Peiyu, WANG Yue. J Build Mater (in Chinese), 2006(5): 576–580.
[5] 韩松. 石膏与碱金属硫酸盐对减水剂与水泥相容性的影响机理[D].北京: 清华大学, 2014.
HAN Song. The influencing mechanism of gypsum and alkali sulfate on the compatibility of cement with superplasticizers (in Chinese, dissertation). Beijing: Tsinghua University, 2012.
[6] 江楠, 王智, 王林龙, 等. 硫酸盐对聚羧酸减水剂分散性及吸附量的影响[J]. 硅酸盐学报, 2013, 41(11): 1521–1526.
JIANG Nan, WANG Zhi, WANG Linglong, et al. J Chin Ceram Soc, 2013, 41(11): 1521–1526.
[7] 刘娟红, 高霞, 纪洪广. 无机盐对硫酸盐与聚羧酸减水剂相互作用的影响[J]. 沈阳建筑大学学报(自然科学版), 2013, 29(4): 687–692+ 697.
LIU Juanhong, GAO Xia, JI Hongguang. J Shenyang Jianzhu Unive (Nat Sci), 2013, 29(4): 687–692+697.
[8] PALACIOS M, PUERTAS F. Effect of superplasticizer and shrinkage–reducing admixtures on alkali–active slag pastes and mortars[J]. Cem Concr Res, 2005, 35: 1358–1367.
[9] FLATT R J, HOUST Y F. A simplified view on chemical effects perturbing the action of superplasticizers[J]. Cem Concr Res, 2011, 31(8): 1169–1176.
[10] GOLASZEWSKI J, Influence of cement properties on new generation superplasticizers performance[J]. Constr Build Mater, 2012, 35: 586–596.
[11] WALLECIK O H, FEVS D, WALLEVIK J E, et al. Avoiding inaccurate interpretations of rheological measurements for cement-based materials[J]. Cem Concr Res, 2015, 78: 100–109.
[12] ODLER I, WONNEMANN R. Effects of alkalis on Portland cement hydration, I, Alkali oxides incorporated into the crystalline lattice of clinker mineral[J]. Cem Concr Res, 1983, 13(4): 477–482.
[13] 钱觉时, 余金城, 孙化强, 等. 钙矾石的形成与作用[J]. 硅酸盐学报, 2017, 45(11): 1569–1581.
QIAN Jueshi, YU Jincheng SUN Huaqiang, et al. J Chin Ceram Soc, 2017, 45(11): 1569–1581.
[14] WANG X, PAN Z, SHEN X, et al. Stability and decomposition mechanism of ettringite in presence of ammonium sulfate solution[J]. Constr Build Mater, 2016, 124: 786–793.
[15] 阎培渝, 韩建国. 复合胶凝材料的初期水化产物和浆体结构[J]. 建筑材料学报, 2004, 7(2): 202–206.
YAN Peiyu, HAN Jianguo. J Build Mater (in Chinese), 2004, 7(2): 202–206.
[16] CHUANG C, LEE J. Premature stiffening of cement paste caused by secondary gypsum and syngenite formation[J]. Arch Res, 2011, 13(1): 25–32.
[17] 陈旭峰, 陆纯煊. 碱对硅酸盐水泥水化硬化性能的影响[J]. 硅酸盐学报, 1993(4): 301–308.
CHEN Xufeng, LU Chunxuan. J Chin Ceram Soc, 1993(4): 301–308.
[18] WAY S J, SHAYAN A. Early hydration of a portland cement in water and sodium hydroxide solutions: composition of solutions and nature of solid phases[J]. Cem Concr Res, 1989, 19(5): 759–769.
[19] SPIERINGS G A C M, STEIN H N. The influence of Na2O on the hydration of C3A, I, Paste hydration[J]. Cem Concr Res, 1975(6): 265–272.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com