首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
海洋浪溅区混凝土的多因素时变环境作用模型
作者:杨绿峰     
单位:(广西大学土木建筑工程学院 工程防灾与结构安全教育部重点实验室 广西防灾减灾与工程安全重点实验室 南宁 530004) 
关键词:混凝土 浪溅区 表面氯离子浓度 时变特性 环境作用 
分类号:TQ
出版年,卷(期):页码:2019,47(11):0-0
DOI:
摘要:

 为了量化描述海洋浪溅区混凝土的环境作用,研究建立了一种考虑多因素耦合影响的海洋浪溅区混凝土表面氯离子浓度(Cs,spl)时变模型。首先搜集遴选了372组长期自然暴露试验数据,建立了Cs,spl的试验数据库;然后通过对试验数据的分析,研究确定了材料特性和暴露时间对Cs,spl的耦合影响;进而利用两阶段回归分析法确定了胶凝材料因子,据此修正胶凝材料种类对水胶比和暴露时间的影响规律,建立了能够综合考虑水胶比、胶凝材料种类和暴露时间等多因素耦合影响的Cs,spl时变模型;最后通过与现场暴露试验数据和现有模型的对比分析验证了该模型的有效性和适用性。

基金项目:
国家自然科学基金项目(51678165;51668008)和广西自然科学基金项目(2018GXNSFAA281344)资助
作者简介:
参考文献:

 [1] VAL D V, STEWART M G. Life-cycle cost analysis of reinforced concrete structures in marine environments[J]. Struct Saf, 2003, 25(4): 343–362.

[2] Norwegian Concrete, Marine chloride - A probabilistic approach to derive durability related provisions for NS-EN 206-1[S]. Norway, 2007.
[3] DuraCrete. R17 Final Technical report-General guidelines for durability design and redesign [R]. Demark: The European Union, 2000.
[4] 中华人民共和国交通运输部. JTS 153-2015水运工程结构耐久性设计标准[S]. 北京: 人民交通出版社, 2016.
People's Republic of China Ministry of Transport. JTS 153-2015 Standard for Durability of Port and Waterway Engineering Structure (in Chinese). Beijing: China Communications Press. 2015.
[5] National Laboratory for Civil Engineering. LNEC E465 Methodology for estimating the concrete performance properties allowing to comply with the reinforced or pre-stressed concrete structures under environmental exposures XC and XS (in Portuguese)[S]. Lisbon: 2007.
[6] MARQUES P F, COSTA A, LANATA F. Service life of RC structures: chloride induced corrosion: prescriptive versus performance-based methodologies[J]. Mater Struct, 2012, 45(1): 277–296.
[7] 王晓舟, 金伟良. 海港码头混凝土结构干湿交替区域氯离子侵蚀规律研究[J]. 海洋工程, 2010, 28(4): 97–104, 110.
WANG Xiaozhou, JIN Weiliang. The Ocean Eng (in Chinese), 2010, 28(4): 97–104, 110.
[8] STEPHEN L A, DWAYNE A J, MATTHEW A M, et al. Predicting the service life of concrete marine structures, an environmental methodology[J]. ACI Struct J, 1998, 95(2): 205–214. 
[9] PANG L, LI Q W. Service life prediction of RC structures in marine environment using long term chloride ingress data: Comparison between exposure trials and real structure surveys[J]. Constr Build Mater, 2016, 113: 979–987.
[10] COSTA A, APPLETON J. Chloride penetration into concrete in marine environment-Part II: Prediction of long term chloride penetration[J]. Mater Struct, 1999, 32(5): 354–359. 
[11] PACK S W, JUNG M S, SONG H W, et al. Prediction of time dependent chloride transport in concrete structures exposed to a marine environment[J]. Cem Concr Res, 2010, 40(2): 302–312.
[12] ARORA P, POPOV B N, HARAN B, et al. Corrosion initiation time of steel reinforcement in a chloride environment - A one dimensional solution[J]. Corros Sci, 1997, 39(4): 739–759.
[13] KASSIR M K, MICHEL G. Chloride-induced corrosion of reinforced concrete bridge decks[J]. Cem Concr Res, 2002, 32: 139–143.
[14] 赵羽习, 王传坤, 金伟良, 等. 混凝土表面氯离子浓度时变规律试验研究[J]. 土木建筑与环境工程, 2010, 32(3): 8–13.
ZHAO Yuxi, WANG Chuankun, JIN Weiliang, et al. J Civil Arch Environ Eng (in Chinese), 2010, 32(3): 8–13.
[15] RIDING K A, THOMAS M D A, FOLLIARD K J. Apparent diffusivity model for concrete containing supplementary cementitious materials [J]. ACI Mater J, 2013, 110(6): 705–714.
[16] CHALEE W, JATURAPITAKKUL C, CHINDAPRA-SIRT P. Predicting the chloride penetration of fly ash concrete in seawater[J]. Mar Struct, 2009, 22(3): 341–353.
[17] MUTHULINGAM S, RAO B N. Consistent models for estimating chloride ingress parameters in fly ash concrete[J]. J Build Eng, 2015, 3: 24–38.
[18] PETCHERDCHOO A. Time dependent models of apparent diffusion coefficient and surface chloride for chloride transport in fly ash concrete[J]. Constr Build Mater, 2013, 38(1): 497–507. 
[19] LI Q W, LI K F, ZHOU X G, et al. Model-based durability design of concrete structures in Hong Kong–Zhuhai–Macau sea link project[J]. Struct Saf, 2015, 53: 1–12.
[20] 蔡荣, 杨绿峰, 余波. 海洋潮汐浪溅区混凝土表面氯离子浓度计算模型[J]. 海洋工程, 2014, 32(5): 25–33.
CAI Rong, YANG Lufeng, YU Bo. The Ocean Eng (in Chinese), 2014, 32(5): 25–33.
[21] YANG L F, CAI R, YU B. Investigation of computational model for surface chloride concentration of concrete in marine atmosphere zone[J]. Ocean Eng, 2017, 138: 105–111.
[22] YANG L F, CAI R, YU B. Modeling of environmental action for submerged marine concrete in terms of surface chloride concentration[J]. Struct Concr, 2018, 19: 1512–1520.
[23] MACHECHNIE J R. Predictions of reinforced concrete durability in the marine environment[D]. Cape Town: University of Cape Town, 1995.
[24] NANUKUTTAN S V, BASHEER L, MCCARTER W J, et al. Full-Scale Marine Exposure Tests on Treated and Untreated Concretes—Initial 7-Year Results[J]. ACI Mater J, 2008, 105(1): 81–87.
[25] KIM J, MCCARTER W J, SURYANTO B, et al. Chloride ingress into marine exposed concrete: A comparison of empirical- and physically- based models[J]. Cem Concr Comp, 2016, 72(1): 133–145.
[26] COSTA A, APPLETON J. Chloride penetration into concrete in marine environment—Part I: Main parameters affecting chloride penetration[J]. Mater Struct, 1999, 32(4): 252–259.
[27] LEE N P, CHISHOLM D H. Durability of reinforced concrete structures under marine exposure in New Zealand[M]. Branz, 2005.
[28] 金立兵. 多重环境时间相似理论及其在沿海混凝土结构耐久性中的应用[D]. 浙江: 浙江大学, 2008.
JIN Libing. Multi-environmental time similarity theory and its application in coastal concrete structural durability (in Chinese, dissertation). Zhejiang: Zhejiang University, 2008.
[29] 范志宏, 杨福麟, 黄君哲, 等. 海工混凝土长期暴露试验研究[J]. 水运工程, 2005,380(9): 45–48, 57.
FAN Zhihong, YANG Fulin, HUANG Junzhe, et al. Port Waterway Eng (in Chinese), 2005, 380(9): 45–48, 57.
[30] 朱雅仙, 蔡伟成, 李岩, 等. 海洋环境下混凝土中氯离子的扩散系数[J]. 腐蚀与防护, 2010, 31(8): 587–590.
ZHU Yaxian, CAI Weicheng, LI Yan, et al. Corros Prot (in Chinese), 2010, 31(8): 587–590.
[31] WU L J, LI W, YU X N. Time-dependent chloride penetration in concrete in marine environments[J]. Constr Build Mater, 2017, 152: 406–413.
[32] 刘秉京. 混凝土结构耐久性设计[M]. 北京: 人民交通出版社, 2007.
LIU Bingjing. Durability design of concrete structure. Beijing: China Communications Press, 2007.
[33] 胡红梅, 马保国. 混凝土矿物掺合料[M]. 北京: 中国电力出版社, 2016.
HU Hongmei, MA Baoguo. Concrete Mineral Admixture (in Chinese). Beijing: China Electric Power Press, 2016.
[34] SONG Z, JIANG L, ZHANG Z, et al. Distance-associated chloride binding capacity of cement paste subjected to natural diffusion[J]. Constr Build Mater, 2016, 112: 925–932.
[35] YUAN Q, SHI C J, SCHUTTER G D, et al. Chloride binding of cement-based materials subjected to external chloride environment–a review[J]. Constr Build Mater, 2009, 23(1): 1–13.
[36] 金祖权, 孙伟, 赵铁军, 等. 在不同溶液中混凝土对氯离子的固化程度[J]. 硅酸盐学报, 2009, 37(7): 1068–1072, 1078.
JIN Zuquan, SUN Wei, ZHAO Tiejun, et al. J Chin Ceram Soc, 2009, 37(7): 1068–1072, 1078.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com