首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
钢渣碳化砖的碱激发-碳化协同效应影响因素
作者:叶家元1 张文生1  迪1 司政凯2 陈晓飞2 
单位:(1. 中国建筑材料科学研究总院有限公司 绿色建筑材料国家重点实验室 北京 100024 2. 河南兴安新型建筑材料有限公司 郑州 450100) 
关键词:钢渣 碱激发 碳化 协同效应 碳化砖 
分类号:TU528
出版年,卷(期):页码:2019,47(11):0-0
DOI:
摘要:

 以钢渣为主要原料制备了钢渣碳化砖,分析了其在碱激发条件下的碳化效果影响因素。结果表明,钢渣因含有f-CaO、硅酸二钙等可碳化组分而表现为更高的CO2吸收量,是适宜的原材料。Na2CO3激发能力恰当且可提升碳化效果,是适宜的激发剂。掺用Na2CO3时,碳化强度随钢渣用量增加而增大,但钢渣用量达到1 800 kg/m3时CO2吸收量显著下降;强度几乎不受钢渣细度影响,CO2吸收量随钢渣细度增加而增加,但细度超过440 m2/kg时CO2吸收量增加变缓;碳化砖的强度随骨料用量增加而增大,但CO2吸收量变化不明显。占钢渣7%~13%的水用量可使试样具有足够好的碳化效果,但水用量为11%、13%时CO2吸收量下降。7%水用量时钢渣砖碳化后强度增长20.0 MPa以上,在0.75%Na2CO3对钢渣的激发作用并协同碳化作用条件下,可使强度再增长10.0 MPa、CO2吸收量再增加1%以上;然而当Na2CO3用量超过1%,增强作用变弱、CO2吸收量下降。钢渣碳化砖的适宜配比为:钢渣(比表面积440 m2/kg) 1 640 kg/m3,骨料328 kg/m3 (占钢渣的20%,下同),水       115 kg/m3 (7%),Na2CO3 13.12 kg/m3 (0.75%)。该配比制备的试样碳化后其抗压强度、CO2吸收量可分别达到39.2 MPa、9.15%。在碳化过程中生成更多且沉积于孔洞的碳酸钙,获得更致密基体,是碱激发协同碳化增强的主要原因。

基金项目:
国家自然科学基金项目(51572252)资助;国家“863”计划课题(2009AA03Z506)资助
作者简介:
参考文献:

 [1] CHEN Q, JOHNSON D C, ZHU L, et al. Accelerated carbonation and leaching behavior of the slag from iron and steel making industry[J]. J Univ Sci Technol B, 2007, 14(4): 297–301.

[2] YOUNG J F, BERGER R L, BREESE J. Accelerated curing of compacted calcium silicate mortars on exposure to CO2[J]. J Am Ceram Soc, 1974, 57: 394–398.
[3] BERTOS M F, SIMONS S J R, HILLS C D, et al. A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2[J]. J Hazard Mater, 2004, B112: 193–205.
[4] GARRABRANS A C, SANCHEZ F, KOSSON D S. Changes in constituent equilibrium leaching and pore water characteristics of a Portland cement mortar as a result of carbonation[J]. Waste Manage, 2004, 24: 19–36.
[5] LI X, BERTOS M F, D COLIN, et al. Accelerated carbonation of municipal solid waste incineration fly ashes[J]. Waste Manage, 2007, 27: 1 200–1 206.
[6] ROZIÈRE E, LOUKILI A, CUSSIGH F. A performance based approach for durability of concrete exposed to carbonation[J]. Constr Build Mater, 2009, 23(1): 190–199.
[7] RENDEK E, DUCOM G, GERMAIN P. Carbon dioxide sequestration in municipal solid waste incinerator (MSWI) bottom ash[J]. J Hazard Mater, 2006, B128: 73–79.
[8] 梁嘉琪. 利用电石渣生产碳化砖的工艺与技术[J]. 砖瓦, 2006(5): 20–23.
LIANG Jiaqi. Brick Tile (in Chinese), 2006(5): 20–23.
[9] 戴巍. 电石渣碳化技术及碳化砖[J]. 砖瓦, 2006(8): 32–33.
DAI Wei. Brick Tile (in Chinese), 2006(8): 32–33.
[10] 曹伟达,杨全兵. 钢渣–熟石灰碳化砖的特性[J]. 硅酸盐学报, 2013, 41(10): 1395–1400.
CAO Weida, YANG Quanbing. J Chin Ceram Soc, 2013, 41(10): 1395–1400.
[11] HUMBERT P S, GOMES J C. CO2 activated steel slag-based materials: A review[J]. J Clean Prod, 2019, 208: 448–457.
[12] 房延凤. 钢渣中碱性矿物碳酸化及产物衍变规律研究[D]. 大连: 大连理工大学, 2017.
FANG Yanfeng. Carbonation of alkaline minerals in steel slag and products evolution process (in Chinese, dissertation). Dalian: Dalian University of Technology, 2017.
[13] HUIJGEN W J J, WITKAMP G J, COMANS R N J. Mineral CO2 sequestration by steel slag carbonation[J]. Environ Sci Technol, 2005, 39: 9676–9682.
[14] BOONE M A, NIELSEN P, KOCK T, et al. Monitoring of stainless-steel slag carbonation using X-ray computed microtomography[J]. Environ Sci Technol, 2014, 48: 674–680.
[15] LIU Z, ZHANG D, LI L, et al. Microstructure and phase evolution of alkali-activated steel slag during early age[J]. Constr Build Mater, 2019, 204: 158–165.
[16] MORANDEAU A, THIÉRY M, DANGLA P. Investigation of the carbonation mechanism of CH and C-S-H in terms of kinetics, microstructure changes and moisture properties[J]. Cem Concr Res, 2014, 56: 153–170.
[17] SHI Z, SHI C, WAN S, et al. Effect of alkali dosage and silicate modulus on carbonation of alkali activated slag mortars[J]. Cem Concr Res, 2018, 113: 55–64.
[18] LI N, FARZADNIA N, SHI C. Microstructural changes in alkali-activated slag mortars induced by accelerated carbonation[J]. Cem Concr Res, 2017, 100: 214–226.
[19] MASTALI M, KINNUNEN P, DALVAND A, et al. Drying shrinkage in alkali-activated binders-A critical review[J]. Constr Build Mater, 2018, 190: 533–550. 
[20] 郜效娇, 卢豹, 蒋伟丽, 等. 压蒸条件下钢渣的碳化过程[J]. 材料导报, 2016, 30(2): 106–110.
GAO Jiaojiao, LU Bao, JIANG Weili, et al. Mater Rev (in Chinese), 2016, 30(2): 106–110.
[21] 王苗捷, 郝雅娟, 杨恒权, 等. 碳化法制备高比表面积白炭黑工艺研究[J]. 无机盐工业, 2016, 48(3): 59–62.
WANG Miaojie, HAO Yajuan, YANG Hengquan, et al. Inorg Chem Ind (in Chinese), 2016, 48(3): 59–62.
[22] YADAV S, MEHRA A. Experimental study of dissolution of minerals and CO2 sequestration in steel slag[J]. Waste Manage, 2017, 64: 348–357.
[23] KAKIZAWA M, YAMASAKI A, YANAGISAWA Y. A new CO2 disposal process via artificial weathering of calcium silicate accelerated by acetic acid[J]. Energy, 2001, 26(1): 341–354.
[24] 王博, 刘家祥, 罗珣, 等. 乙二醇-TG法测定钢渣中的游离氧化  钙[J]. 北京化工大学学报(自然科学版), 2011, 38(2): 17–21.
WANG Bo, LIU Jiaxiang, LUO Xun, et al. J Beijing Univ Chem Technol (Nat Sci) (in Chinese), 2011, 38(2): 17–21.
[25] HUNTZINGER D N, GIERKE J S, KAWATRA S K, et al. Carbon dioxide sequestration in cement kiln dust through mineral carbonation[J]. Environ Sci Technol, 2009, 43: 1986–1992.
[26] VILLAIN G, THIERY M, PLATRET G. Measurement methods of carbonation profiles in concrete: thermogravimetry, chemical analysis and gammadensimetry[J]. Cem Concr Res, 2007, 37: 1182–1192.
[27] BOUQUET E, LEYSSENS G, SCHONNENBECK C, et al. The decrease of carbonation efficiency of CaO along calcinations-carbonation cycles: experiments and modeling[J]. Chem Eng Sci, 2009, 64: 2136–2146.
[28] LI J, ZHANG H, XU A, et al. Theoretical and experimental on carbon dioxide sequestration degree of steel slag[J]. J Iron Steel Res Int, 2012, 19(12): 29–32.
[29] 吴昊泽, 赵华磊, 谭文杰, 等. 颗粒级配对钢渣碳化的影响[J]. 济南大学学报(自然科学版), 2010, 24(1): 21–24.
WU Haoze, ZHAO Hualei, TANG Wenjie, et al. J Univ Jinan (Sci Technol) (in Chinese), 2010, 24(1): 21–24.
[30] BACIOCCHI R, COSTA G, DIGIANFILIPPO M, et al. Thin-film versus slurry-phase carbonation of steel slag: CO2 uptake and effects on mineralogy[J]. J Hazard Mater, 2015, 283: 302–313.
[31] 梁晓杰, 叶正茂, 常钧. 碳酸化钢渣复合胶凝材料早期水化活性[J]. 硅酸盐学报, 2012, 40(2): 226–233.
LIANG Xiaojie, YE Zhengmao, CHANG Jun. J Chin Ceram Soc, 2012, 40(2): 226–233.
[32] BACIOCCHI R, COSTA G, POLETTINI A, et al. Influence of particle size on the carbonation of stainless steel slag for CO2 storage[J]. Energy Procedia, 2009, 1: 4859–4866.
[33] CAPOBIANCO O, COSTA G, THUY L, et al. Carbonation of stainless steel slag in the context of in situ Brownfield remediation[J]. Miner Eng, 2014, 59: 91–100.
[34] LIBRANDI P, COSTA G, SOUZA A C B, et al. Carbonation of steel slag: testing of the wet route in a pilot-scale reactor[J]. Energy Procedia, 2017, 114: 5381–5392.
[35] UKWATTAGE N L, RANJITH P G, LI X. Steel-making slag for mineral sequestration of carbon dioxide by accelerated carbonation[J]. Measurement, 2017, 97: 15–22.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com