首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
二氧化钛改性石墨烯对碱激发矿渣复合材料力学性能及微观结构的影响
作者:郭思瑶1 2 乔晓立1 万小梅1 2 赵铁军1 2  蕊1  哲1 王腾腾1 
单位:(1. 青岛理工大学土木工程学院 山东 青岛 266033  2. 青岛理工大学蓝色经济区工程建设与安全山东省协同创新中心 山东 青岛 266033) 
关键词:石墨烯 碱激发水泥 力学性能 微观结构 二氧化钛改性 矿渣 复合材料 
分类号:TU 528.57
出版年,卷(期):页码:2019,47(11):0-0
DOI:
摘要:

 为改善石墨烯的疏水性,利用二氧化钛的插层法制备分散性良好的二氧化钛改性石墨烯(TiO2-RGO),并将其掺入碱激发矿渣基体中制备石墨烯质量分数分别为0,0.01%,0.02%和0.03%的石墨烯增强碱激发复合材料,研究其力学性能和微观结构以及石墨烯的增强增韧机理。结果表明:在石墨烯掺量为0.03%范围内时,碱激发水泥复合材料的弯曲、抗压强度随石墨烯的质量分数的增加而增大。同时,当添加0.03%石墨烯时,碱激发复合材料的弯曲韧性较空白试样提高了80%以上。通过扫描电子显微镜、X射线衍射仪对复合材料的微观结构进行表征,发现可延展的石墨烯可填充孔隙、增加与基体的接触面积,并通过裂纹偏转和分支以及石墨烯的拉出和锚固作用,有效地提高碱激发复合材料的弯曲韧性、改善脆性破坏特性,但不会改变基体的物相特征。

基金项目:
泰山学者工程专项经费,国家自然科学基金面上项目(51878365),山东省自然科学基金项目(ZR2017MEE040),国家自然科学基金重点国际合作项目(51420105015)。
作者简介:
参考文献:

 [1] ANDREW R M. Global CO2 emissions from cement production[J]. Earth System Sci Data, 2018, 10(1): 1–52.

[2] RYU G S, LEE Y B, KOH K T, et al. The mechanical properties of fly ash-based geopolymer concrete with alkaline activators[J]. Constr Build Mater, 2013, 47(5): 409–418.
[3] DAVIDOVITS J. 30 Years of Successes and Failures in Geopolymer Applications. Market: Trends and Potential Breakthroughs [C]. Geopolymer Conference, 2002, 10: 1–16.
[4] PROVIS J L, BERNAL S A. Geopolymers and Related Alkali-Activated Materials[J]. Annual Rev Mater Res, 2014, 44(1): 299–327.
[5] DAVIDOVIT S J. Geopolymers: Inorganic Polymeric New Materials[J]. J Therm Ana Calorim, 1991, 37(8): 1633–1656.
[6] BAKHAREV T. Durability of geopolymer materials in sodium and magnesium sulfate solutions[J]. Cem Concr Res, 2005, 35(6): 1233–1246.
[7] GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nat Mater, 2007, 6(3): 183–191.
[8] DU X, SKACHKO I, BARKER A, et al. Approaching ballistic transport in suspended graphene.[J]. Nat Nanotechnol, 2008, 3(8): 491–495.
[9] ZHAO X, ZHANG Q, CHEN D, et al. Enhanced mechanical properties of graphene-based poly (vinyl alcohol) composites[J]. Macromolecules, 2010, 43(5): 2357–2363.
[10] XU Z, GAO C. In situ\r, polymerization approach to graphene-reinforced nylon-6 composites[J]. Macromolecules, 2010, 43(16): 6716–6723.
[11] LIU J, YAN H, REECE M J, et al. Toughening of zirconia/alumina composites by the addition of graphene platelets[J]. J Eur Ceram Soc, 2012, 32(16): 4185–4193.
[12] LV S, MA Y, QIU C, et al. Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites[J]. Constr Build Mater, 2013, 49(Complete): 121–127.
[13] LV S, TING S, LIU J, et al. Use of graphene oxide nanosheets to regulate the microstructure of hardened cement paste to increase its strength and toughness[J]. Cryst Eng Comm, 2014, 16(36): 8508–8516.
[14] 史才军, 巴维尔?克利文科, 黛拉?罗伊. 碱-激发水泥和混凝土[M]. 北京: 化学工业出版社, 2008.
SHI Caijun, ROY D, KRIVENKO P. Alkali-activated Cements and Concretes [M]. Beijing: Chemical Industry Press, 2008.
[15] DIKIN D A, STANKOVICH S, ZIMNEY E J, et al. Preparation and characterization of graphene oxide paper[J]. Nature, 2007, 448(7152): 457–460.
[16] SAAFI M, TANG L, FUNG J, et al. Enhanced properties of graphene/fly ash geopolymeric composite cement[J]. Cem Concr Res, 2015, 67: 292–299.
[17] WANG G, YANG J, PARK J, et al. Facile Synthesis and Characterization of Graphene Nanosheets[J]. J Phys Chem C, 2008, 112(22).
[18] EDER D, WINDLE A H. Carbon–Inorganic Hybrid Materials: The Carbon km anotube/TiO2 Interface[J]. Adv Mater, 2008, 20(9): 1787–1793.
[19] 宋敬思, 曾金凤, 陈孝鹏, 等. 硼氢化钠一步还原制备纳米银颗粒/石墨烯复合材料及其在导电胶中的应用[J]. 石河子大学学报(自科版), 2016, 34(6) : 686–690.
SONG Jingsi, ZENG Jinfeng, CHEN Xiaopeng, et al. J Shihezi Univ: Nat Sci(in Chinese), 2016, 34(6): 686–690.
[20] WANG G, YANG J, PARK J, et al. Facile Synthesis and Characterization of Graphene Nanosheets[J]. J Phys Chem C, 2008, 112(22): 8192–8195.
[21] LI X, LIU X, HAN X, et al. Hydrothermal preparation and photocatalytic activity of TiO2/graphene composite[J]. J Harbin Instit Technol, 2013, 45(3): 76–79.
[22] WANG B, JIANG R, WU Z. Investigation of the mechanical properties and microstructure of graphene nanoplatelet-cement composite[J]. Nanomaterials, 2016, 6(11): 200.
[23] RANJBAR N, MEHRALI M, MEHRALI M, et al. Graphene nanoplatelet-fly ash based geopolymer composites[J]. Cem Concr Res, 2015, 76: 222–231.
[24] YAN S, HE P, JIA D, et al. Effect of reduced graphene oxide content on the microstructure and mechanical properties of graphene–geopolymer nanocomposites[J]. Ceram Int, 2016, 42(1): 752–758.
[25] 闫姝. 氧化石墨烯增强铝硅酸盐聚合物的聚合与陶瓷化机制[D]. 哈尔滨: 哈尔滨工业大学, 2016.
YAN Shu. Geopolymerization and ceramic formation mechanism of the graphene oxide reinforced geopolymer(in Chinese, dissertation). Harbin: Harbin Institute of Technology, 2016.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com