首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
水化硅酸镁胶凝材料研究进展
作者:  胡亚茹     陈延信 
单位:(西安建筑科技大学材料科学与工程学院 西安 710055) 
关键词:水化硅酸镁 反应机理 氧化镁 硅灰 
分类号:TQ172
出版年,卷(期):页码:2019,47(11):0-0
DOI:
摘要:

 可溶性SiO2与MgO反应可形成水化硅酸镁凝胶[(MgO)x–SiO2–(H2O)y,M-S-H]。M-S-H凝胶的组成可变,结晶度差,硅氧四面体呈层状结构,对体系抗压强度起主要作用。M-S-H凝胶形成速率依赖于反应物的活性,活性MgO和硅灰是常见的反应物,该混合物遇水放热,放热速率与MgO活性密切相关,浆体溶液呈弱碱性,被认为在建筑材料领域有潜在应用价值。系统总结了M-S-H反应机理、组成特点、孔溶液化学、水化热、工作性和强度演化规律及其影响因素,同时分析了Mg2+对C-S-H和Ca2+对M-S-H的作用机理,展望了水化硅酸镁胶凝材料发展前景。

基金项目:
国家重点研发计划(2017YFB0309903-03,2016YFB0303400);陕西省重点研发计划(2017GY-142,2017GY-176); 陕西省自然科学基金(2017JM5097)。
作者简介:
参考文献:

 [1] BOWEN N, TUTTLE O. The system MgO-SiO2-H2O[J]. Geol Soc Am Bull, 1949, 60(3): 439−460.

[2] 李兆恒. MgO-SiO2-H2O胶凝体系的反应机制及应用研究[D]. 广州:华南理工大学, 2015.
LI Zhaoheng. Reaction mechanisms and application study of MgO-SiO2-H2O cementitious system (in Chinese, dissertation). Guangdong: South China University of Technology, 2010. 
[3] GARTNER E. Are there any practical alternatives to the manufacture of portland cement clinker?[J]. J Chin Ceram Soc, 2012, 40(1): 61−68.
[4] LAKNER K S. Climate change: A guide to CO2 sequestration[J]. Science, 2003, 300(5626): 1677−1678.
[5] RUITER D, AUSTRHEIM H. Formation of magnesium silicate hydrate cement in nature[J]. J Geol Soc, 2018, 175(2): 308−320.
[6] COLE W F. A crystalline hydrated magnesium silicate formed in the breakdown of a concrete sea wall[J]. Nature, 1953, 171(4347): 354−355.
[7] CALVO J L G, HIDALGO A, ALONSO C, et al. Development of low-pH cementitious materials for HLRW repositories : Resistance against ground waters aggression[J]. Cem Concr Res, 2010, 40(8): 1290−1297.
[8] DAUZERES A, ACHIEDO G, NIED D, et al. Magnesium pertur- bation in low-pH concretes placed in clayey environment-solid characterizations and modeling[J]. Cem Concr Res, 2016, 79: 137−150.
[9] JENN A, MäDER U, LEROUGE C, et al. In situ interaction between different concretes and Opalinus clay[J]. Phys Chem Earth, 2014, 70−71: 71−83.
[10] LEROUGE C, GABOREAU S, GRANGEON S, et al. In situ interactions between Opalinus clay and low alkali concrete[J]. Phys Chem Earth, 2017, 99: 3−21.
[11] MADER U, JENNI A, LEROUGE C, et al. 5-year chemicophysical evolution of concrete-claystone interfaces[J]. Swiss J Geosci, 2017, 110: 307−327.
[12] WEERDT K D, JUSTNES H. The effect of sea water on the phase assemblage of hydrated cement paste[J]. Cem Conc Compos, 2015, 55(1): 215−222.
[13] WHITTAKER M, ZAJAC M, HAHA M B, et al. The impact of alumina availability on sulfate resistance of slag composite cements[J]. Constr Build Mater, 2016, 119: 356−369.
[14] BONEN D, COHEN M D. Magnesium sulfate attack on portland cement paste−II. Chemical and mineralogical analyses[J]. Cem Concr Res, 1992, 22: 707−718.
[15] JAKOBSEN U K, De WEERDT K D, GEIKER M R. Elemental zonation in marine concrete[J]. Cem Concr Res, 2016, 85: 12−27.
[16] SANTHANAMa M, COHEN M D, OLEK J. Mechanism of sulfate attack: A fresh look. Part 1. Summary of experimental results[J]. Cem Concr Res, 2002, 32: 915−921.
[17] BONEN D. Composition and appearance of magnesium silicate hydrate and its relation to deterioration of cement-based materials[J]. J Am Ceram Soc, 1992, 75: 2904–2906.
[18] HANS WEDEPOHL K. The composition of the continental crust[J]. Miner Mag, 1994, 58(7): 1217−1232.
[19] BERNARD E, LOTHENBACH B, GOFF L F, et al. Effect of magnesium on calcium silicate hydrate (C-S-H)[J]. Cem Concr Res, 2017, 97: 61−72.
[20] BERNARD E, LOTHENBACH B, RENTSCH D, et al. Formation of magnesium silicate hydrates (M-S-H)[J]. Phys Chem Earth, 2017, 99: 142−157.
[21] NIED D, ENEMARK-RASMUSSEN K, L'HOPITAL E, et al. Properties of magnesium silicate hydrates (MSH)[J]. Cem Concr Res, 2016, 79: 323−332.
[22] ZHANG T T, CHEESEMAN C, VANDEPERRE L. Development of low pH cement systems forming magnesium silicate hydrate (MSH)[J]. Cem Concr Res, 2011, 41: 439−442.
[23] 焦文秀, 刘状壮, 卢永伟, 等. 水化硅酸镁(M-S-H)凝胶的制备与影响因素研究[J]. 混凝土, 2017(11): 81−86.
JIAO W X, LIU Z Z, LU Y W, et al. Concrete (in Chinese), 2017(11): 81−86.
[24] 杜延男. 利用粉煤灰替代硅灰制备水化硅酸镁水泥[D]. 大连: 大连理工大学, 2016.
DU Y N. Preparation of magnesium-silicate-hydrate cement by replacing silica fume with pulverized fuel ash(in Chinese, dissertation). Dalian: Dalian University of Technology, 2016.
[25] 陈硕, 王立久. 活性MgO改性流化床炉底渣-硅灰复合材料的力学性能及产物[J]. 复合材料学报, 2018, 35(5): 1288−1297.
CHEN S, WANG L J. Act Mater Compos Sin (in Chinese), 2018, 35(5): 1288−1297.
[26] 佟钰, 赵竹玉, 陶冶, 等. 水热条件下氧化镁的矿渣活性激发作用研究[J]. 硅酸盐通报, 2016, 35(10): 3139−3143.
TONG Y, ZHAO Z Y, TAO Y, et al. Bull Chin Ceram Soc (in Chinese), 2016, 35(10): 3139−3143.
[27] ABBDEL-GAWWAD H A, EL-ALEEM S A, AMER A A, et al. Combined impact of silicate-amorphicity and MgO-reactivity on the performance of Mg-silicate cement[J]. Constr Build Mater, 2018, 189: 78−85.
[28] DU Y C, WANG X K, WU J S, et al. Mg3Si4O10(OH)2 and MgFe2O4 in situ grown on diatomite: Highly efficient adsorbents for the removal of Cr(VI)[J]. Micropor Mesopor Mater, 2018, 271: 83−91.
[29] TEMUUJIN J, OKADA K, MACKENZIE K J D. Formation of layered magnesium silicate during the aging of magnesium hydroxide-silica mixtures[J]. J Am Ceram Soc, 2010, 81(3): 754−759.
[30] TEMUUJIN J, OKADA K, MACKENZIE K J D. Role of water in the mechanochemical reactions of MgO−SiO2 systems[J]. J Solid State Chem, 1998, 138(1): 169−177.
[31] ONO H, WADA S. Properties of layer silicates formed from MgO-SiO2-H2O mixtures at 25 ℃[J]. J Fac Agriculture Kyushu Univ, 2007, 52(1): 159−162.
[32] TRAN H M, SCOTT A. Strength and workability of magnesium silicate hydrate binder systems[J]. Constr Build Mater, 2017, 131: 526−535.
[33] JIN F, AL-TABBAA A. Strength and hydration products of reactive MgO-silica pastes[J]. Cem Concr Compos, 2014, 52(21): 27−33.
[34] WALLING S A, KINOSHITA H, BERNAL S A, et al. Structure and properties of binder gels formed in the system Mg(OH)2-SiO2-H2O for immobilisation of magnox sludge[J]. Dalton Trans, 2015, 44(17): 8126–8137.
[35] LOUKHINA I V, BUGAEVA A Y, DUDKIN B N. Mechanochemical synthesis of organically modified magnesium silicate[J]. Russ J Gen Chem, 2015, 85(7): 1583−1587.
[36] 刘俊秀, 佟钰, 夏枫, 等. 水热条件下Mg(OH)2-石英-水体系反应固化性质研究[J]. 硅酸盐通报, 2013, 32(8): 1490−1495.
LIU J X, TONG Y, XIA F, et al. Bull Chin Ceram Soc(in Chinese), 2013, 32(8): 1490−1495.
[37] LI Z, YU Q, CHEN X, et al. The role of MgO in the thermal behavior of MgO-silica fume pastes[J]. J Therm Anal Calorim, 2017, 127(3): 1897−1909.
[38] YANG C S. The system magnesia-silica-water below 300 ℃: I, low-temperature phases from 100 to 300 ℃ and their properties[J]. J Am Ceram Soc, 2010, 43(10): 542−549.
[39] LI Z, ZHANG T, HU J, et al. Characterization of reaction products and reaction process of MgO-SiO2-H2O system at room temperature[J]. Constr Build Mater, 2014, 61(7): 252−259.
[40] SZCZERBA J, PROROK R, ?NIEZEK E, et al. Influence of time and temperature on ageing and phases synthesis in the MgO-SiO2-H2O system[J]. Thermochim Acta, 2013, 567: 57−64.
[41] 卢忠远, 万朴, 苏光兰, 等. 水热条件下蛇纹石的胶凝性研究[J]. 硅酸盐学报, 1997, 25(4): 15−19.
LU Z Y, WAN P, SU G L, et al. J Chin Ceram Soc, 1997, 25(4): 15−19.
[42] NESTERCHUK N I, MAKAROVA T A. The formation of aqueous magnesium silicate in the interaction of solutions of magnesium chloride and sodium metasilicate[J]. Bull Acad Sci USSR, Div Chem Sci, 1970, 19(10): 2053−2055.
[43] KITAMURA A, ONIDUKA K, TANAKA K. The hydration characteristics of magnesia[J]. Refract, 1996, 48(11): 1499−1506.
[44] VERMOLYEA D A. The dissolution of MgO and Mg(OH)2 in aqueous solutions[J]. J Electrochem Soc, 1969, 9: 116.
[45] DURáN T, PENA P, DE A S, et al. Interactions in calcium aluminate cement (CAC)-based castables containing magnesia. Part I: Hydration-dehydration behaviour of MgO in the absence of CAC[J]. J Am Ceram Soc, 2011, 94: 902−908.
[46] FRUHWIRTH O, HERZOG G W, HOLLERER I, et al. Dissolution and hydration kinetics of MgO[J]. Surf Technol, 1985, 24: 301−317.
[47] JIA Y, WANG B, WU Z, et al. Role of sodium hexametaphosphate in MgO/SiO2 cement pastes[J]. Cem Concr Res, 2016, 89: 63−71.
[48] AMARAL L F, OLIVEIRA I R, SALOMãO R, et al. Temperature and common-ion effect on magnesium oxide (MgO) hydration[J]. Ceram Int, 2010, 36(3): 1047−1054.
[49] SALOMãO R, PANDOLFELLI V C. Citric acid as anti-hydration additive for magnesia containing refractory castables[J]. Ceram Int, 2011, 37(6): 1839−1842.
[50] Kuenzel C, Zhang F, Ferrándiz-Mas V, et al. The mechanism of hydration of MgO-hydromagnesite blends[J]. Cem Concr Res, 2017, 103: 123−129.
[51] AMARAL L F, OLIVEIRA I R, BONADIA P, et al. Chelants to inhibit magnesia (MgO) hydration[J]. Ceram Int, 2011, 37: 1537−1542.
[52] SALOMãO R, BITTENCOURT L R M, PANDOLFELLI V C. A novel approach for magnesia hydration assessment in refactory castables[J], Ceram Int, 2007, 33: 803−810.
[53] SALOMãO R, PANDOLFELLI V C. Microsilica addition as an antihydration technique for magnesia-containing refractory castables[J]. Bull Am Ceram Soc, 2007, 86: 9301−9309.
[54] BREW D R M, GLASSER F P. Synthesis and characterisation of magnesium silicate hydrate gels[J]. Cem Concr Res, 2005, 35: 85−98.
[55] 徐嘉欣. 高分散型六角片状氢氧化镁的制备与表征[D]. 上海: 华东师范大学, 2018.
XU J X. Preparation and characterization of high dispersion hexagonal magnesium hydroxide (in Chinese, dissertation). Shanghai: East China Normal University, 2018.
[56] AGNIESZKA A Pilarska, ?UKASZ Klapiszewski, TEOFIL Jesionowski.  Recent developments in the synthesis, modification and application of Mg(OH)2, and MgO: A review[J]. Powder Technol, 2017, 319: 373−407.
[57] WEI J, YU Q, ZHANG W, et al. Reaction products of MgO and microsilica cementitious materials at different temperatures[J]. J Wuhan Univ Technol-Mater Sci Ed, 2011, 26: 745−748.
[58] ROOSZ C, GRANGEON S, BLANC P, et al. Crystal structure of magnesium silicate hydrates (MSH): The relation with 2:1 Mg-Si phyllosilicates[J]. Cem Concr Res, 2015, 73: 228−237.
[59] CAILLERIE J-B D D L, KERMAREC M, CLAUSE O. 29Si NMR observation of an amorphous magnesium silicate formed during impregnation of silica with Mg(II) in aqueous solution[J]. J Phys Chem, 1995, 99(47): 17273−17281.
[60] TONELLI M, MARTINI F, CALUCCI L, et al. Structural characterization of magnesium silicate hydrate: Towards the design of eco-sustainable cements[J]. Dalton Trans, 2016, 45(8): 3294−3304.
[61] TONELLI M, MARTINI F, CALUCCI L, et al. Traditional Portland cement and MgO-based cement: a promising combination?[J]. Phys Chem Earth, 2017, 99: 158−167.
[62] JIN F, AL-TABBAA A. Thermogravimetric study on the hydration of reactive magnesia and silica mixture at room temperature[J]. Thermochim Acta, 2013, 566(16): 162−168.
[63] LOTHENBACH B, NIED D, L'HôPITAL E, et al. Magnesium and calcium silicate hydrates[J]. Cem Concr Res, 2015, 77: 60−68.
[64] WALLING S A. Conversion of magnesium bearing radioactive wastes into cementitious binders[D]. The University of Sheffield, Sheffield, UK, 2016.
[65] ZHANG T, CHEESEMAN C R, VANDEPERRE L J. Characterisation of corrosion of nuclear metal wastes encapsulated in magnesium silicate hydrate (MSH) cement[A]// Ceramic Materials for Energy Applications II, John Wiley & Sons, Inc, New York, 2012: 159−167.
[66] ZHANG T, VANDEPERRE L J, CHEESEMAN C R. Magnesium- silicate-hydrate cements for encapsulating problematic aluminium containing wastes[J]. J Sustainable Cem Based Mater, 2012(1): 34−45.
[67] ZHANG T, VANDEPERRE L J, CHEESEMAN C R. Bottom-up design of a cement for nuclear waste encapsulation[A]// Ceramic Materials for Energy Applications, John Wiley & Sons, Inc, New York, 2011: 41−49.
[68] SALOMÃO R V C. Pandolfelli.Microsilica addition as anti-hydration technique of magnesia in refractory castables[J]. Cerâmica, 2008, 54: 43−48.
[69] SONAT C, DUNG N T, UNLUER C. Performance and microstructural development of MgO-SiO2 binders under different curing conditions[J]. Constr Build Mater, 2017, 154: 945−955.
[70] MO L, DENG M, TANG M. Effects of calcination condition on expansion property of MgO-type expansive agent used in cement-based materials[J]. Cem Concr.Res, 2010, 40(3): 437−446.
[71] EUBANK W R. Calcination studies of magnesium oxides[J]. J Am Ceram Soc, 1951, 34(8): 225−229.
[72] ZHANG T T, VANDEPERRE L J, CHEESEMAN C R. Formation of magnesium silicate hydrate (M-S-H) cement pastes using sodium hexametaphosphate[J]. Cem Concr Res, 2014, 65(65): 8−14.
[73] ZHANG T T, ELENA D, SHIZHUO S, et al.  Properties of magnesium silicate hydrate (M-S-H) cement mortars containing chicken feather fibres[J]. Constr Build Mater, 2018, 180: 692−697.
[74] ZHANG Y, Li Y W, DAI Y J, et al. Hydration evolution of MgO-SiO2 slurries in the presence of sodium metasilicate[J]. Ceram Int, 2018, 44(6): 6626−6633.
[75] MO L, DENG M, TANG M, et al. MgO expansive cement and concrete in China: Past, present and future[J]. Cem Conc Res, 2014,  57(3): 1−12.
[76] 刘娟红, 张璇, 韩方晖, 等. 含不同形态硅灰的复合胶凝材料浆体的流变学特性[J]. 硅酸盐学报, 2017, 45(2): 220−226.
LIU J H, ZHANG X, HAN F H, et al. J Chin Ceram Soc, 2017, 45(2): 220−226.
[77] 韦江雄, 陈益民. 常温下MgO-SiO2-H2O体系胶凝性的研究[J]. 武汉理工大学学报, 2006 , 28(2): 14−16+33.
WEI J X, CHEN Y M. J Wuhan Univ Technol(in Chinese), 2006, 28(2): 14−16+33.
[78] ZHANG T T, LIANG X M, LORIN M, et al. Control of drying shrinkage of magnesium silicate hydrate gel cements[J]. Key Eng Mater, 2016, 709: 109−113.
[79] 范付忠, 钱光人, 赖振宇, 等. CaO-MgO-SiO2-H2O体系的热力学基础研究[J]. 硅酸盐通报, 2001, 20(1): 18−23.
FAN F Z, QIAN G R, LAI Z Y, et al. Bull Chin Ceram Soc(in Chinese), 2001, 20(1): 18−23.
[80] 徐光亮, 赖振宇, 钱光人, 等. CaO-SiO2-MgO-H2O 体系的热力学研究[J]. 西南工学院学报, 1999, 14(3): 1−5.
XU G L, LAI Z Y, QIAN G R, et al. J Southwest Inst Technol(in Chinese), 1999, 14(3): 1−5.
[81] 卢都友, 郑彦增, 刘永道, 等. 轻烧氧化镁对地质聚合物变形行为的影响及机理[J]. 硅酸盐学报, 2012, 40(11): 1625−1630. 
LU D Y, ZHENG Y Z, LIU Y D, et al. J Chin Ceram Soc, 2012, 40(11): 1625−1630.
[82] 徐光亮, 周歧雄. MgO对钙硅体系水热反应产物的影响研究[J]. 硅酸盐学报, 2000, 28(2): 100−104.
XU G L, ZHOU Q X. J Chin Ceram Soc, 2000, 28(2): 100−104.
[83] JIA Y, WANG B, WU Z, et al. Effect of CaO on the reaction process of MgO-SiO2-H2O cement pastes[J]. Mater Lett, 2017, 192: 48−51.
[84] FRANCESCA M, MONICA T, MARCO G, et al. Hydration of MgO/SiO2 and Portland cement mixtures: A structural investigation of the hydrated phases by means of X-ray diffraction and solid state NMR spectroscopy[J]. Cem Concr Res, 2017, 102: 60–67.
[85] CHIANG W S, FERRARO G, FRATINI E, et al. Multiscale structure of calcium- and magnesiumsilicate-hydrate gels[J]. J Mater Chem A, 2014, 2: 12991–12998.
[86] CONWAY B. Ion hydration co-sphere interactions in the double -layer and ionic solutions[J]. J Electroanal Chem Interfac, 1981, 123(1): 81−94.
[87] BERNARD E, LOTHENBACH B, CAU-DIT-COUMES C, et al. Magnesium and calcium silicate hydrates, part I: Investigation of the possible magnesium incorporation in calcium silicate hydrate (C-S-H) and of the calcium in magnesium silicate hydrate (M-S-H)[J]. Appl Geochem, 2018, 89: 229−242.
[88] BERNARD E, DAUZÈRES A, LOTHENBACH B. Magnesium and calcium silicate hydrates, part II: Mg-exchange at the interface “low-pH” cement and magnesium environment studied in a C-S-H and M-S-H model system[J]. Appl Geochem, 2018, 89: 210−218. 
[89] SHRIVASTAVA O P, KOMARNENI S, BREVAL E. Mg2+ uptake by synthetic tobermorite and xonotlite[J]. Cem Concr Res, 1991, 21(1): 83−90.
[90] MOSTAFA N Y, KISHAR E A, ABO-EL-ENEIN S A. FTIR study and cation exchange capacity of Fe3+ and Mg2+ substituted calcium silicate hydrates[J]. J Alloys Compd, 2009, 473(1): 538−542.
[91] QIAN G, XU G, LI H, et al. Mg-Xonotlite and its coexisting phases[J]. Cem Concr Res, 1997, 27(3): 315−320.
[92] QIANi G, LI A, XU G, et al. Hydrothermal products of the C3MS2- C12A7-MgO system[J]. Cem Concr Res, 1997, 27(12): 1791−1797.
[93] VESPA B, OTHENBACH B L, DäHN R, et al. Characterisation of magnesium silicate hydrate phases (M-S-H): A combined approach using synchrotron-based absorption spectroscopy and ab initio calculations[J]. Cem Concr Res, 2018, 109: 175−183.
[94] FERNANDEZ L, ALONSO C, ANDRADE C, et al. The interaction of magnesium in hydration of C3S and CSH formation using 29Si MAS-NMR[J]. J Mater Sci, 2008, 43(17): 5772−5783.
[95] FERNANDEZ L, ALONSO C, HIDALGO A, et al. The role of magnesium during the hydration of C3S and CSH formation. Scanning electron microscopy and mid-infrared studies[J]. Adv Cem Res, 2005, 17(1): 9−21.
[96] YANG T, YAO X, ZHANG Z. Geopolymer prepared with high-magnesium nickel slag: Characterization of properties and microstructure[J]. Constr Build Mater, 2014, 59(6): 188−194.
[97] ZHANG Z, ZHU Y, YANG T, et al. Conversion of local industrial wastes into greener cement through geopolymer technology: A case study of high-magnesium nickel slag[J]. J Cleaner Prod, 2017, 141: 463−471.
[98] BOBROWSKI A, KMITA A, STAROWICZ M, et al. Effect of magnesium oxide nanoparticles on water glass structure[J]. Arch Foundry Eng, 2012, 12(3): 9−12.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com