首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
混凝土微生物自愈合技术研究进展
作者:王立成1 2  凯1 
单位:(1. 大连理工大学 海岸和近海工程国家重点实验室 辽宁 大连 116024  2. 中国建筑材料科学研究总院 绿色建筑材料国家重点实验室 北京 100024) 
关键词:裂缝 微生物 自愈合混凝土 生物自愈过程 
分类号:TU528
出版年,卷(期):页码:2019,47(11):0-0
DOI:
摘要:

 为了抑制混凝土裂缝扩展所造成的结构损伤及由混凝土开裂带来的高额维修费用,采用微生物诱导碳酸钙沉淀实现混凝土微裂缝(<300 µm)的修复成为近年来的研究热点。本文对微生物自愈合混凝土的定义、分类、作用机理、影响因素以及愈合效果的评价指标等方面进行了文献综述,总结和评述了国内外混凝土微生物自愈合技术的最新研究进展和主要结论。研究发现,混凝土中的微裂缝主要由微生物的代谢产物—碳酸钙填充。除用于填充、修复微裂缝外,微生物代谢产生的矿物沉淀还能够改善混凝土的力学性能。此外,微生物修复后混凝土的孔隙率、吸水性、渗透性以及氯离子运输能力的降低也被认为是微生物愈合剂对混凝土结构耐久性改善的体现。因此,微生物作为混凝土愈合剂具备可持续修复裂缝的能力且可改善混凝土的力学性能和耐久性,从而达到修复和愈合混凝土的目的。最后,在分析已有研究成果的基础上,对混凝土微生物自愈合研究中存在的一些问题和未来的研究方向进行了讨论和展望。

基金项目:
绿色建筑材料国家重点实验室开放基金(2018);国家重点研究发展计划(973计划)(2015CB057703)
作者简介:
参考文献:

 [1] 金伟良. 混凝土结构耐久性[M]. 北京: 科学出版社, 2014.

[2] 亢景富. 混凝土硫酸盐侵蚀研究中的几个基本问题[J]. 混凝土, 1995(3): 9–18.
KANG Jingfu. Concrete (in Chinese), 1995(3): 9–18.
[3] PETROSKI H. The Road Taken: The History and Future of America's Infrastructure[M]. New York: Bloomsbury Publishing, 2016.
[4] DE MUYNCK W, DE BELIE N, VERSTRAETE W. Microbial carbonate precipitation in construction materials: a review[J]. J Ecol Eng, 2010, 36(2): 118–136.
[5] BANG S S, GALINAT J K, RAMAKRISHNAN V. Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii[J]. J Enzyme Microb Tech, 2001, 28(4/5): 404–409.
[6] GHOSH P, MANDAL S, CHATTOPADHYAY B D, et al. Use of microorganism to improve the strength of cement mortar[J]. Cem Concr Res, 2005, 35(10): 1980–1983.
[7] REDDY S, RAO M, APARNA P, et al. Performance of standard grade bacterial (Bacillus subtilis) concrete[J]. Asian J Civ Eng (Build Housing), 2010, 11: 43–55.
[8] GAJJAR K M, JAMNU M A. A Study of Performance of Bacillus Lentus on Concrete Cracks[J]. PARIPEX-Indian J Res, 2013, 2(7): 71–75.
[9] GOLLAPUDI U K, KNUTSON C L, BANG S S, et al. A new method for controlling leaching through permeable channels[J]. Chemosphere, 1995, 30(4): 695–705.
[10] DREESEN R, DUSAR M. Historical building stones in the province of Limburg (NE Belgium): Role of petrography in provenance and durability assessment[J]. Mater Charact, 2004, 53(2/4): 273–287.
[11] TIANO P, BIAGIOTTI L, MASTROMEI G. Bacterial bio-mediated calcite precipitation for monumental stones conservation: methods of evaluation[J]. J Microbiol Meth, 1999, 36(1/2): 139–145.
[12] 任立夫, 钱春香. 碳酸酐酶微生物沉积碳酸钙修复水泥基材料表面裂缝[J]. 硅酸盐学报, 2014, 42(11): 1389–1395.
REN Lifu, QIAN Chunxiang. J Chin Ceram Soc, 2014, 42(11): 1389–1395.
[13] 王瑞兴, 钱春香. 微生物沉积碳酸钙修复水泥基材料表面缺陷[J]. 硅酸盐学报, 2008, 36(4): 457–464.
WANG Ruixing, QIAN Chunxiang. J Chin Ceram Soc, 2008, 36(4): 457–464.
[14] JONKERS H M. Self healing concrete: a biological approach// Martin D. Hager ed.Self healing materials[M]. The Netherlands: Springer, 2007: 195–204.
[15] STUCKRATH C, SERPELL R, VALENZUELA L M, et al. Quantification of chemical and biological calcium carbonate precipitation: performance of self-healing in reinforced mortar containing chemical admixtures[J]. Cem Concr Comp, 2014, 50: 10–15.
[16] BLAISZIK B J, KRAMER S L B, OLUGEBEFOLA S C, et al. Self-healing polymers and composites[J]. Annu Rev Mater Res, 2010, 40: 179–211.
[17] WANG J Y, SOENS H, VERSTRAETE W, et al. Self-healing concrete by use of microencapsulated bacterial spores[J]. Cem Concr Res, 2014, 56: 139–152.
[18] WIKTOR V, JONKERS H M. Quantification of crack-healing in novel bacteria-based self-healing concrete[J]. Cem Concr Comp, 2011, 33(7): 763–770.
[19] JONKERS H M, THIJSSEN A, MUYZER G, et al. Application of bacteria as self-healing agent for the development of sustainable concrete[J]. Ecol Eng, 2010, 36(2): 230–235.
[20] JONKERS H M, SCHLANGEN E. Crack repair by concrete-immobilized bacteria[C]// Proceedings of the first international conference on self healing materials, Noordwijk aan Zee, The Netherlands, 2007: 18–20.
[21] 徐晶, 王彬彬. 陶粒负载微生物的混凝土开裂自修复研究[J]. 材料导报, 2018, 31(14): 127–131.
XU Jing, WANG Binbin. Mater Rev (in Chinese), 2018, 31(14): 127–131.
[22] JONKERS H M, SCHLANGEN E. Development of a bacteria-based self healing concrete[C]//Proceeding. int. FIB symposium. 2008(1): 425–430.
[23] VAN TITTELBOOM K, DE BELIE N, DE MUYNCK W, et al. Use of bacteria to repair cracks in concrete[J]. Cem Concr Res, 2010, 40(1): 157–166.
[24] XU J, YAO W. Multiscale mechanical quantification of self-healing concrete incorporating non-ureolytic bacteria-based healing agent[J]. Cem Concr Res, 2014, 64: 1–10.
[25] 崔福斋. 生物矿化[M]. 北京: 清华大学出版社, 2007.
[26] HERMAN A, ADDADI L, WEINER S. Interactions of sea-urchin skeleton macromolecules with growing calcite crystals—a study of intracrystalline proteins[J]. Nature, 1988, 331(6156): 546–548.
[27] LOWENSTAM H A. Minerals formed by organisms[J]. Science, 1981, 211(4487): 1126–1131.
[28] 李忠. 生物矿物: 研究现状与展望[J]. 地球科学进展, 1993, 8(4): 49–53.
LI Zhong. Adv Earth Sci (in Chinese), 1993, 8(4): 49–53.
[29] BOQUET E, BORONAT A, RAMOS-CORMENZANA A. Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon[J]. Nature, 1973, 246(5434): 527–529.
[30] CASTANIER S, LE MÉTAYER-LEVREL G, PERTHUISOT J P. Ca-carbonates precipitation and limestone genesis—the microbiogeologist point of view[J]. Sediment Geol, 1999, 126(1/4): 9–23.
[31] ZHU Y, WU M, GAO N, et al. Removal of antimonate from wastewater by dissimilatory bacterial reduction: Role of the coexisting sulfate[J]. J Hazard Mater, 2018, 341: 36–45.
[32] JONKERS H M, SCHLANGEN E. A two component bacteria-based self-healing concrete[C]// Concrete Repair, Rehabilitation and Retrofitting II: 2nd International Conference on Concrete Repair, Rehabilitation and Retrofitting, Cape Town, South Africa, 2008, 8(27.9): 119.
[33] ER?AN Y Ç, VERBRUGGEN H, DE GRAEVE I, et al. Nitrate reducing CaCO3 precipitating bacteria survive in mortar and inhibit steel corrosion[J]. Cem Concr Res, 2016, 83: 19–30.
[34] ER?AN Y Ç, DA SILVA F B, BOON N, et al. Screening of bacteria and concrete compatible protection materials[J]. Constr Build Mater, 2015, 88: 196–203.
[35] WANG J. Self-healing concrete by means of immobilized carbonate precipitating bacteria[D]. Ghent: Ghent University, 2013.
[36] DA SILVA F B, DE BELIE N, BOON N, et al. Production of non-axenic ureolytic spores for self-healing concrete applications[J]. Constr Build Mater, 2015, 93: 1034–1041.
[37] TZIVILOGLOU E, WIKTOR V, JONKERS H M, et al. Selection of nutrient Used in Biogenic healing agent for cementitious materials[J]. Front Mater, 2017. doi:10.3389/fmats.2017.00015.
[38] 徐晶, 杜雅莉, 白慧莉. 脲解型微生物诱导碳酸钙沉积研究[J]. 功能材料, 2016, 47(4): 1–5.
XU Jing, DU Yali, BAI Huili. J Funct Mater (in Chinese), 2016, 47(4): 1–5.
[39] 钱春香, 罗勉, 潘庆峰, 等. 自修复混凝土中微生物矿化方解石的形成机理[J]. 硅酸盐学报, 2013, 41(5): 620–626.
QIAN Chunxiang, LUO Mian, PAN Qingfeng, et al. J Chin Ceram Soc, 2013, 41(5): 620–626.
[40] SCHLEGEL H G, ZABOROSCH C. General Microbiology[M]. Cambridge: Cambridge University Press, 1993.
[41] WANG J, DEWANCKELE J, CNUDDE V, et al. X-ray computed tomography proof of bacterial-based self-healing in concrete[J]. Cem Concr Comp, 2014, 53: 289–304.
[42] WANG J Y, SNOECK D, VAN VLIERBERGHE S, et al. Application of hydrogel encapsulated carbonate precipitating bacteria for approaching a realistic self-healing in concrete[J]. Constr Build Mater, 2014, 68: 110–119.
[43] WANG J, MIGNON A, SNOECK D, et al. Application of modified-alginate encapsulated carbonate producing bacteria in concrete: a promising strategy for crack self-healing[J]. Front Microbiol, 2015, 6: 1088.
[44] WANG J, VAN TITTELBOOM K, DE BELIE N, et al. Use of silica gel or polyurethane immobilized bacteria for self-healing concrete[J]. Constr Build Mater, 2012, 26(1): 532–540.
[45] BANG S S, LIPPERT J J, YERRA U, et al. Microbial calcite, a bio-based smart nanomaterial in concrete remediation[J]. Int J Smart Nano Mater, 2010, 1(1): 28–39.
[46] BHASKAR S, HOSSAIN K M A, LACHEMI M, et al. Effect of self-healing on strength and durability of zeolite-immobilized bacterial cementitious mortar composites[J]. Cem Concr Comp, 2017, 82: 23–33.
[47] WANG J Y, DE BELIE N, VERSTRAETE W. Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete[J]. J Ind Microbiol Biot, 2012, 39(4): 567–577.
[48] ZHANG J, LIU Y, FENG T, et al. Immobilizing bacteria in expanded perlite for the crack self-healing in concrete[J]. Constr Build Mater, 2017, 148: 610–617.
[49] KHALIQ W, EHSAN M B. Crack healing in concrete using various bio influenced self-healing techniques[J]. Constr Build Mater, 2016, 102: 349–357.
[50] ANDALIB R, MAJID M Z A, HUSSIN M W, et al. Optimum concentration of Bacillus megaterium for strengthening structural concrete[J]. Constr Build Mater, 2016, 118: 180–193.
[51] ANDREW T C S, SYAHRIZAL I I, JAMALUDDIN M Y. Effective microorganisms for concrete (EMC) admixture–its effects to the mechanical properties of concrete[C]// Awam International Conference on Civil Engineering (AICCE’12) Geohazard Information Zonation (GIZ’12), Penang, Malaysia. 2012.
[52] SARKAR M, CHOWDHURY T, CHATTOPADHYAY B, et al. Autonomous bioremediation of a microbial protein (bioremediase) in Pozzolana cementitious composite[J]. J Mater Sci, 2014, 49(13): 4461–4468.
[53] RAMACHANDRAN S K, RAMAKRISHNAN V, BANG S S. Remediation of concrete using micro-organisms[J]. ACI Mater J, 2001, 98(1): 3–9.
[54] DE MUYNCK W, COX K, DE BELIE N, et al. Bacterial carbonate precipitation as an alternative surface treatment for concrete[J]. Constr Build Mater, 2008, 22(5): 875–885.
[55] TZIVILOGLOU E, PAN Z, JONKERS H M, et al. Bio-based self-healing mortar:An experimental and numerical study[J]. J Adv Concr Technol, 2017, 15(9): 536–543.
[56] LUO M, QIAN C, LI R. Factors affecting crack repairing capacity of bacteria-based self-healing concrete[J]. Constr Build Mater, 2015, 87: 1–7.
[57] XU J, WANG X. Self-healing of concrete cracks by use of bacteria-containing low alkali cementitious material[J]. Constr Build Mater, 2018, 167: 1–14.
[58] ACHAL V, MUKERJEE A, REDDY M S. Biogenic treatment improves the durability and remediates the cracks of concrete structures[J]. Constr Build Mater, 2013, 48: 1–5.
[59] SHARMA T K, ALAZHARI M, HEATH A, et al. Alkaliphilic Bacillus species show potential application in concrete crack repair by virtue of rapid spore production and germination then extracellular calcite formation[J]. J Appl Microbiol, 2017, 122(5): 1233–1244.
[60] ER?AN Y Ç, PALIN D, JONKERS H, et al. Healing depth and functionality regain of non-axenic granulated culture based self-healing concrete[J]. Microorganisms-Cementitious Mater Intl, 2018, 2: 511–520.
[61] SIDDIQUE R, SINGH K, SINGH M, et al. Properties of bacterial rice husk ash concrete[J]. Constr Build Mater, 2016, 121: 112–119.
[62] PARK S J, Park Y M, CHUN W Y, et al. Calcite-forming bacteria for compressive strength improvement in mortar[J]. J Microbiol Biot, 2010, 20(4): 782–788.
[63] PEI R, LIU J, WANG S, et al. Use of bacterial cell walls to improve the mechanical performance of concrete[J]. Cem Concr Comp, 2013, 39: 122–130.
[64] ERSAN Y C, PALIN D, TASDEMIR Y, et al. Volume fraction, thickness and permeability of the sealing layer in microbial self-healing concrete containing biogranules[J]. Front Built Environ, 2018, 4: 70.
[65] DE MUYNCK W, DEBROUWER D, DE BELIE N, et al. Bacterial carbonate precipitation improves the durability of cementitious materials[J]. Cem Concr Res, 2008, 38(7): 1005–1014.
[66] 徐晶, 姚武. 微生物非脲解作用诱导碳酸钙沉积研究[J]. 同济大学学报(自然科学版), 2013, 41(10): 1542–1546.
XU Jing, YAO Wu. J Tongji Uinv (in Chinese), 2013, 41(10): 1542–1546.
[67] ALGAIFI H A, BAKAR S A, SAM A R M, et al. Numerical modeling for crack self-healing concrete by microbial calcium carbonate[J]. Constr Build Mater, 2018, 189: 816–824.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com