首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
硅酸二钙的结构与活性
作者:张文生1 张江涛1 2 叶家元1 钱觉时3 沈卫国2 汪智勇1 
单位:(1. 中国建筑材料科学研究总院 绿色建筑材料国家重点实验室 北京 100024 2. 武汉理工大学材料科学与工程学院 武汉430070 3. 重庆大学材料科学与工程学院 重庆 400044) 
关键词:硅酸二钙 结构 外来组分 水化活性 碳化 
分类号:TQ172.11
出版年,卷(期):页码:2019,47(11):0-0
DOI:
摘要:

 硅酸二钙既是硅酸盐水泥熟料的主要矿物,也是硫铝酸盐水泥熟料的主要矿物,并且有可能成为吸收捕集二氧化碳材料的重要矿物。发展以硅酸二钙为主要矿物组成的低钙、低碳排放胶凝材料正在成为研究热点。本文在简述硅酸二钙结构及其晶型转变的基础上,综述分析了硅酸二钙在高温合成过程中外来离子对其结构与活性的影响;硅酸二钙在水化阶段液相中外来离子对其活性发挥的影响,以及利用硅酸二钙在结构上易发生碳化反应的特点,制备可吸收二氧化碳材料的现状。在此基础上,展望了硅酸二钙结构与活性研究及其应用的发展趋势。

基金项目:
国家自然科学重点基金项目(51832006);国家自然科学基金项目(51772281)
作者简介:
参考文献:

 [1] THOMAS J, GHAZIZADEH S, MASOERO E. Kinetic mechanisms and activation energies for hydration of standard and highly reactive forms of beta-dicalcium silicate (C2S)[J]. Cem Concr Res, 2017, 100: 322–328.

[2] 王燕谋, 苏慕珍, 张量. 硫铝酸盐水泥[M]. 北京: 北京工业大学出版社, 1999.
[3] SHTEPENKO O, HILLS C, BROUGH A, et al. The effect of carbon dioxide on β-dicalcium silicate and Portland cement[J]. Chem En J, 2006, 118(1/2): 107–118. 
[4] 侯贵华, 卢豹, 郜效娇, 等. 新型低钙水泥的制备及其碳化硬化过程[J]. 硅酸盐学报. 2016, 44(2): 286–291.
HOU Guihua, LU Bao, GAO Xiaojiao, et al. J Chin Ceram Soc, 2016, 44(2): 286–291.
[5] GUO P, WANG B, BAUCHY M, et al. Misfit stresses caused by atomic size mismatch: The origin of doping-induced destabilization of dicalcium silicate[J]. Cryst Growth Des, 2016, 16(6): 3124–3132.
[6] XUE P, XU A, HE D, et al. Research on the sintering process and characteristics of belite sulphoaluminate cement produced by BOF slag[J]. Construct Build Mater, 2016, 122: 567–576.
[7] SU D, YUE G, LI Q, et al. Research on the preparation and properties of high belite sulphoaluminate cement (HBSAC) based on various industrial solid wastes[J]. Materials(Basel), 2019,12(9): 1–17.
[8] MU Y, LIU Z, WANG F, et al. Effect of barium doping on carbonation behavior of γ-C2S[J]. J CO2 Util, 2018, 27: 405–413.
[9] MU Y, LIU Z, WANG F, et al. Carbonation characteristics of γ-dicalcium silicate for low-carbon building material[J]. Construct Build Mater, 2018, 177: 322–331.
[10] KOUMPOURI D, ANGELOPOULOS G. Effect of boron waste and boric acid addition on the production of low energy belite cement[J]. Cem Concr Compos, 2016, 68: 1–8.
[11] BARBIER J, HYDE B. The structures of the polymorphs of dicalcium silicate, Ca2SiO4[J]. Acta Cryst, 1985, B41: 383–390.
[12] SDEANE K, MAJUMDAR A J, FRED ORDWAY. Re-examination of the polymorphism of dicalcium silicate[J]. J Am Ceram Soc, 1961, 44(8): 405–411.
[13] GOSH P, PAUL A, RAINA K. The chemistry of dicalcium silicate mineral[J]. J Mater Sci, 1979(14): 1554–1566.
[14] BENSTED J. γ-Dicalcium silicate and its hydraulicity[J]. Cem Concr Res, 1978, 8: 73–76.
[15] CHAN C, KRIVEN W M, YOUNG J. Physical stabilization of the β→γ transformation in dicalcium silicate[J]. J Am Ceram Soc, 1992, 75(6): 1621–1627.
[16] LUDWIG H M, ZHANG W. Research review of cement clinker chemistry[J]. Cem Concr Res, 2015, 78: 24–37.
[17] LINK T, BELLMANN F, LUDWIG H, et al. Reactivity and phase composition of Ca2SiO4 binders made by annealing of alpha-dicalcium silicate hydrate[J]. Cem Concr Res, 2015, 67: 131–137.
[18] TORAYA H, YAMAZAKI S. Simulated annealing structure solution of a new phase of dicalcium silicate Ca2SiO4 and the mechanism of structural changes from α-dicalcium silicate hydrate to αL′-dicalcium silicate via the new phase[J]. Acta Crystallogr, Sect B, 2002, 58(4): 613–621.
[19] REGOURD M. Crystal Chemistry of Portland Cement Phases[M]. New York: Applied Science Publishers, 1983.
[20] LEA F M. The Chemistry of Cement and Concrete[M]. Edward Arnold, 1970.
[21] JOST K H, ZIEMER B. Relations between the crystal structures of calcium silicates and their reactivity against water[J]. Cem Concr Res, 1984, 14(2): 177–184.
[22] 冯修吉, 闵新民, 陶从喜. 应用量子化学算法研究硅酸二钙的结构与性能[J]. 武汉工业大学学报, 1994(2): 1–6.
FENG Xiuji, MIN Xinmin, TAO Congxi. J Wuhan Univ Tech(in Chinese), 1994(2): 1–6. 
[23] SHAHSAVARI R, CHEN L, TAO L. Edge dislocations in dicalcium silicates: Experimental observations and atomistic analysis[J]. Cem Concr Res, 2016, 90: 80–88.
[24] DURGUN E, MANZANO H, PELLENQ R J M, et al. Understanding and controlling the reactivity of the calcium silicate phases from First Principles[J]. Chem Mater, 2012, 24(7): 1262–1267.
[25] WANG Q, LI F, SHEN X, et al. Relation between reactivity and electronic structure for alpha'(L-), beta- and amma-dicalcium silicate: A first-principles study[J]. Cem Concr Res, 2014, 57: 28–32.
[26] BENSTED J, BARNES P. 水泥的结构与性能[M]. 北京: 化学工业出版社, 2009: 57–113.
BENSTED J, BARNES P. Beijing: Chemistry Industry Press, 2009, 57–113.
[27] 张华, 杨南如. 高活性β-C2S的正电子湮没研究[J]. 硅酸盐学报, 1992, 20(4): 309–314.
ZHANG Hua, YANG Nanru. J Chin Ceram Soc, 1992, 20(4): 309–314.
[28] MATHRR P C. Reactive belite as route to greener and more durable cement-a review[J]. Cem Int, 2014(12): 60–69.
[29] MORSLI K, TORREÁ G, ZAHIR M, et al. Mineralogical phase analysis of alkali and sulfate bearing belite rich laboratory clinkers[J]. Cem Concr Res, 2007, 37(5): 639–646.
[30] BENARCHIDA M Y, DIOURIA A, BOUKHARIA, et al. Elaboration and thermal study of iron-phosphorus-substituted dicalcium silicate phase[J]. Cem Concr Res, 2004, 34: 1873–1879.
[31] 冯修吉, 龙世宗. 微量离子对β-C2S稳定性的影响及其机理研究[J]. 硅酸盐学报, 1985(4): 424–432.  
FENG Xiuji, LONG Shizong. J Chin Ceram Soc, 1985(4): 424–432.
[32] FENG X, LONG S. Investigation of the effect of minor ions on the stability of β-C2S and the mechanism of stabilization[J]. Cem Concr Res, 1986, 16(4): 587–601.
[33] CHATTERJEE A K. High belite cements-present status and future[J]. Cem Concr Res, 1996, 26(8): 1213–1225.
[34] YOUNG J. Highly reactive dicalcium silicates for belite cements, In: Bournazel J P (Ed). Proceedings of the RILEM International Conference, Concrete: From Material to Structure Arles, France, 1998.
[35] SKIBATED T, POULSEN S, TRAN T. Studies on guest-ion incorporation in Portland cement-Part 1[J]. ZKG Int, 2013, 66: 46–52.
[36] KIM Y, HONG S. Influence of minor ions on the stability and hydration rates of β-dicalcium silicate[J]. J Am Ceram Soc, 2004(87): 900–905.
[37] LI X, HUANG H, XU J, et al. Statistical research on phase formation and modification of alite polymorphs in cement clinker with SO3 and MgO[J]. Construct Build Mater, 2012, 37: 548–555.
[38] MIN Y, LU H, ZHU J, et al. Structural evolution and characterization of modulated structure for alite doped with MgO[J]. Chin J Inorg Chem, 2012, 28: 2444–2450.
[39] MAHESWARAN S, KALASSELVAM S, SARAVANA S, et al. β-Belite cements (β-dicalcium silicate) obtained from calcined lime sludge and silica fume[J]. Cem Concr Compos, 2016, 66: 57–65.
[40] STANEK T, SULOVSKY P. Active low-energy belite cement[J]. Cem Concr Res, 2015, 68(7): 203–210.
[41] STANEK T, SULOVSKY P. Dicalcium silicate doped with sulfur[J]. Adv Cem Res, 2012, 24(4): 233–238.
[42] KACIMI L, SIMON-MASSERON A, SalemSALEM S, et al. Synthesis of belite cement clinker of high hydraulic reactivity[J]. Cem Concr Res, 2009, 39(7): 559–565.
[43] CUESTA A, LOSILLA E R, ARANDA M A G, et al. Reactive belite stabilization mechanisms by boron-bearing dopants[J]. Cem Concr Res, 2012, 42(4): 598–606.
[44] CUESTA A, ARANDA M, SANZ J, et al. Mechanism of stabilization of dicalcium silicate solid solution with aluminium[J]. Dalton Transact, 2014(43): 2176–2182.
[45] EL-DIDAMONY H, KHALIL K, AHMED I, et al. Preparation of β-dicalcium silicate (β-C2S) and calcium sulfoaluminate (C3A3C$) phases using non-traditional nano-materials[J]. Construct Build Mater, 2012, 35: 77–83.
[46] SINGH N. Hydrothermal synthesis of β-dicalcium silicate (β-Ca2SiO4)[J]. Prog Cryst Growth Ch, 2006, 52(1): 77–83.
[47] BORGHOLS W, WAGEMAKER M, LAFONT U, et al. Impact of Nanosizing on Lithiated Rutile TiO2[J]. Chem Mater, 2008, 20(9): 2949–2955.
[48] MAITI S C, GHOROI C. Influence of catalytic nano-additive for stabilization of β-dicalcium silicate and its hydration rate with different electrolytes[J]. Cem Concr Res, 2017, 98: 111–121.
[49] NICOLEAU L, NONAT A, PERREY D. The di- and tricalcium silicate dissolutions[J]. Cem Concr Res, 2013, 47: 14–30.
[50] BULLARD J W, JENNINGS H, LIVINGSTON R, et al. Mechanisms of cement hydration[J]. Cem Concr Res, 2011, 41(12): 1208–1223.
[51] CHOON-KEUN P. Effects of alkalies on hydration of β-dicalcium silicate and its resultant hydrates[J]. J Jpn Ceram Soc, 2000, 108: 113–117.
[52] EI-DIDAMONY A, HELMY I, EI-ALEEM S. Hydration characteristics of β-C2S in the presence of some accelerators[J]. Cem Concr Res, 1996, 26: 1179–1187.
[53] SÁNCHEZ M J, FERNÁNDEZ-JIMÉNEZ A, PALOMO Á. Alkaline hydration of C2S and C3S[J]. J Am Ceram Soc, 2016, 99(2): 604–611.
[54] SANT G, KUMAAR A, PATAPY C, et al. The influence of sodium and potassium hydroxide on volume changes in cementitious materials[J]. Cem Concr Res, 2012, 42: 1447–1455.
[55] MENDOZA O, GIRALDO, CAMARGO S, et al. Structural and nano-mechanical properties of calcium silicate hydrate (C-S-H) formed from alite hydration in the presence of sodium and potassium hydroxide[J]. Cem Concr Res, 2015, 74: 88–94.
[56] SANCHEZ M, FERNANDEZ-JIMENEZ, PALOMO A. C3S and C2S hydration in the presence of Na2CO3 and Na2SO4[J]. J Am Ceram Soc, 2017, 100(7): 3188–3198.
[57] ASHRAF W. Microstructure of chemically activated gamma-dicalcium silicate paste[J]. Const Build Mater, 2018, 185: 617–627.
[58] KRISKOVA L, PONTIKES Y, ZHANG F, et al. Influence of mechanical and chemical activation on the hydraulic properties of gamma dicalcium silicate[J]. Cem Concr Res, 2014, 55: 59–68.
[59] LOTHENBACH B, NONAT A. Calcium silicate hydrates: Solid and liquid phase composition[J]. Cem Concr Res, 2015, 78: 57–70.
[60] 姚燕. 水泥与混凝土研究进展[M]. 北京: 中国建材工业出版社, 2016.
[61] TAYLOR H. Cement Chemistry[M]. 2nd ed. Thomas Telford, London, 1997.
[62] L’HÓPITAL B, SAOUT G. Incorporation of aluminium in calcium-silicate-hydrates[J]. Cem Concr Res, 2015, 75: 91–103.
[63] MOSTAFA E, ABO-El-ENEIN S. FTIR study and cation exchange capacity of Fe3+- and Mg2+-substituted calcium silicate hydrates[J]. J Alloys Compd, 2009, 473: 538–542.
[64] 莫立武, PANESAR D. 高浓度二氧化碳碳化活性氧化镁水泥浆体的显微结构(英文)[J]. 硅酸盐学报, 2014, 42(2): 142–-149.
MO Liwu, PANESAR D. J Chin Ceram Soc, 2014, 42(2): 142–149.
[65] 史才军, 何平平, 涂贞军, 等. 预养护对二氧化碳养护混凝土过程及显微结构的影响[J]. 硅酸盐学报, 2014, 42(8): 996–1004.
SHI Caijun, HE Pingping, TU Zhenjun, et al. J Chin Ceram Soc, 2014, 42(8): 996–1004.
[66] FARNAM Y, VILLANI C, WASHINGTON T, et al. Performance of carbonated calcium silicate based cement pastes and mortars exposed to NaCl and MgCl2 deicing salt[J]. Const Build Mater, 2016, 111: 63–71.
[67] GUAN X, LIU S, FENG C, et al. The hardening behavior of γ-C2S binder using accelerated carbonation[J]. Construct Build Mater, 2016(114): 204–207. 
[68] CHANG J, FANG Y, SHANG X. The role of β-C2S and γ-C2S on carbon capture and strenght development[J]. Mater Struct, 2016, 49(10): 4417–4424.
[69] 朱明, 雪高瑞, 穆元冬. γ-C2S和β-C2S的碳化和水化研究[J]. 硅酸盐通报, 2017, 36(9): 3026–3052.
ZHU Ming, XUE Gaorui, MU Yuandong. Bull Chin Ceram Soc(in Chinese), 2017, 36(9): 3026–3052.
[70] KERISIT S, FELMY A. Water and carbon dioxide adsorption at olivine surfaces[J]. Chem Geol, 2013, 359: 81–89.
[71] 刘松辉, 张海波, 管学茂, 等. 钠离子对硅酸二钙碳化产物的影响[J]. 建筑材料学报: 2018(6): 1–8.
LIU Songhui, ZHANG Haibo, GUAN Xuemao, et al. J Build Mater(in Chinese), 2018(6): 1–8.
[72] JAMG J, KIM H, PARK S, et al. The influence of sodium hydrogen carbonate on the hydration of cement[J]. Const Build Mater, 2015, 94: 746–749.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com