首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
CdS量子点敏化ZnO纳米片的制备与光电性质
作者:田传进1 赵文燕1 陈雅楠1 汪长安1 2 谢志鹏1 2 
单位:(1. 景德镇陶瓷大学材料科学与工程学院 江西 景德镇 333403 2. 清华大学 新型陶瓷与精细工艺国家重点实验室 北京 100084) 
关键词:氧化锌纳米片 硫化镉量子点 光电转换效率 
分类号:TM914.4
出版年,卷(期):页码:2019,47(12):0-0
DOI:
摘要:

 采用电化学沉积法在透明导电玻璃(FTO)基底上制备氧化锌(ZnO)纳米片,用KOH溶液刻蚀ZnO纳米片,得到多孔纳米片薄膜,再用化学浴沉积法(CBD)使CdS量子点沉积在ZnO纳米片表面,得CdS敏化的多孔ZnO纳米片薄膜。利用X射线衍射仪、场发射扫描电子显微镜、高分辨率透射电子显微镜、电化学工作站研究了复合薄膜的晶体结构、形貌和光电性能。结果表明:KOH溶液刻蚀后的多孔ZnO纳米片光阳极的光电化学转换性能比ZnO纳米片有了明显的提高,光电化学转换效率随着刻蚀时间的延长先增大后减小,刻蚀时间30 min时,样品的光电转换效率提高为原来的7.2倍。多孔ZnO纳米片用CdS量子点敏化后,CdS量子点可以紧密、均匀地生长在多孔ZnO纳米片表面,并与ZnO纳米片形成异质结,其光电转换效率均有大幅度的提高,刻蚀60 min时的复合薄膜的光电转换效率最高,为1.176%,为量子点敏化太阳能电池的潜在应用提供实验基础。

基金项目:
国家自然科学基金(51962015);江西省科技厅自然科学青年基金(20142BAB212006);景德镇市科技局青年基金(701301318,103037201);清华大学新型陶瓷与精细工艺国家重点实验室开放课题(KF201813,KF1211)。
作者简介:
参考文献:

 [1] 卫会云, 王国帅, 吴会觉, 等. 量子点敏化太阳能电池研究进展[J]. 物理化学学报, 2016, 32(1): 201–213.

WEI Huiyun, WANG Guoshuai, WU Huijue, et al. Acta Phys-chim Sin (in Chinese), 2016, 32(1): 201–213.
[2] VOGER R, HOYER P, WELLER H. Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors[J]. J Phys Chem, 1994, 98(12): 3183–3188.
[3] SANTRA P K, KAMAT P V. Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%[J]. J Am Chem Soc, 2012, 134(5): 2508–2511.
[4] LV M, ZHENG D, YE M, et al. Optimized porous rutile TiO2 nanorod arrays for enhancing the efficiency of dye-sensitized solar cells[J]. Energy Environ Sci, 2013, 6(5): 1615–1622.
[5] PAN Z, MORA-SERO I, SHEN Q, et al. High-efficiency “green” quantum dot solar cells[J]. J Am Chem Soc, 2014, 136(25): 9203–9210.
[6] REN Z, WANG J, PAN Z, et al. Amorphous TiO2 buffer layer boosts efficiency of quantum dot sensitized solar cells to over 9%[J]. Chem Mater, 2015, 27(24): 8398–8405. 
[7] DU J, DU Z, HU J S, et al. Zn-Cu-In-Se quantum dot solar cells with a certified power conversion efficiency of 11.6%[J]. J Am Chem Society, 2016, 138(12): 4201–4209.
[8] BASIT M A, ABBAS M A, JUNG E S, et al. Improved light absorbance and quantum-dot loading by macroporous TiO2 photoanode for PbS quantum-dot-sensitized solar cells[J]. Mater Chem Phys, 2017, 196: 170–176.
[9] LUO J, SUN J, GUO P C, et al. Enhancement in efficiency of CdS/CdSe quantum dots-sensitized solar cells based on ZnO nanostructures by introduction of MnS layer[J]. Mater Lett, 2018, 215: 176–178.
[10] REN Z, WANG J, PAN Z, et al. Amorphous TiO2 buffer layer boosts efficiency of quantum dot sensitized solar cells to over 9%[J]. Chem Mater, 2015, 27(24): 8398–8405.
[11] 刘炳坤. 量子点敏化TiO2纳米结构太阳能电池中光阳极的构筑及其光电性质的研究[D]. 吉林大学, 2015.
LIU Bingkun. Photoanode fabrication and photoelectric properties of quantum dots sensitized TiO2 nanostructured solar cells (in Chinese, dissertation). Jilin University, 2015.
[12] GAO F, CHEN Q, ZHANG X, et al. ZnO/TiO2 core-shell heterojunction for CdS and PbS quantum dot-cosensitized solar cells[J]. Current Appl Phys, 2018, 18(5): 546–550.
[13] FENG H L, WU W Q, RAO H S, et al. Three-dimensional TiO2/ZnO hybrid array as a heterostructured anode for efficient quantum-dot-sensitized solar cells[J]. ACS Appl Mater Interf, 2015, 7(9): 5199–5205.
[14] 杨纪元. 氧化锌纳米棒/纳米管阵列的制备及其在染料敏化太阳能电池中的应用[D]. 华侨大学, 2013.
YANG Jiyuan. Preparation of zinc oxide nanorod/nanotube array and its application in dye-sensitized solar cells (in Chinese, dissertation). Huaqiao University, 2013
[15] YUE G, WU J, XIAO Y, et al. CdTe quantum dots-sensitized solar cells featuring PCBM/P3HT as hole transport material and assistant sensitizer provide 3.40% efficiency[J]. Electrochim Acta, 2012, 85: 182–186.
[16] JARA D H, YOON S J, STAMPLECOSKIE K G, et al. Size-dependent photovoltaic performance of CuInS2 quantum dot-sensitized solar cells[J]. Chem Mater, 2014, 26(24): 7221–7228.
[17] MA J, SU S, FU W, et al. Synthesis of ZnO nanosheet array film with dominant {0001} facets and enhanced photoelectrochemical performance co-sensitized by CdS/CdSe[J]. Cryst Eng Comm, 2014, 16(14): 2910–2916.
[18] MA D, SHI J W, ZOU Y, et al. Highly efficient photocatalyst based on a CdS quantum dots/ZnO nanosheets 0D/2D heterojunction for hydrogen evolution from water splitting[J]. ACS Appl Mater Interf, 2017, 9(30): 25377–25386.
[19] WANG W, HAO Q, WANG W, et al. Quantum dot-functionalized porous ZnO nanosheets as a visible light induced photoelectrochemical platform for DNA detection[J]. Nanoscale, 2014, 6(5): 2710–2717.
[20] CHEN H, LI W, LIU H, et al. CdS quantum dots sensitized single-and multi-layer porous ZnO nanosheets for quantum dots-sensitized solar cells[J]. Electrochem Commun, 2011, 13(4): 331–334.
[21] 袁博, 夏惠, 王晓雄, 等. ZnO纳米薄膜的电化学制备及其AFM形貌表征[J]. 大学物理实验, 2010, 23(3): 1–3.
YUAN Bo, XIA Hui, WANG Xiaoxiong, et al. Phys Exp College (in Chinese), 2010, 23(3): 1–3.
[22] SHE G W, ZHANG X H, SHI W S, et al. Controlled synthesis of oriented single-crystal ZnO nanotube arrays on transparent conductive substrates[J]. Appl Phys Lett, 2008, 92(5): 053111.
[23] ELIAS J, TENA-ZAERA R, WANG G Y, et al. Conversion of ZnO nanowires into nanotubes with tailored dimensions[J]. Chem Mater, 2008, 20(21): 6633–6637.
[24] KEHAGIAS T, KOMNINOU P, NOUET G, et al. Misfit relaxation of the A l N/Al2O3 (0001) interface[J]. Phys Rev B, 2001, 64(19): 195329.
[25] MAJIMEL J, BACINELLO D, DURAND E, et al. Synthesis of hybrid gold–gold sulfide colloidal particles[J]. Langmuir, 2008, 24(8): 4289–4294.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com