[1] 卫会云, 王国帅, 吴会觉, 等. 量子点敏化太阳能电池研究进展[J]. 物理化学学报, 2016, 32(1): 201–213.
WEI Huiyun, WANG Guoshuai, WU Huijue, et al. Acta Phys-chim Sin (in Chinese), 2016, 32(1): 201–213.
[2] VOGER R, HOYER P, WELLER H. Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors[J]. J Phys Chem, 1994, 98(12): 3183–3188.
[3] SANTRA P K, KAMAT P V. Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%[J]. J Am Chem Soc, 2012, 134(5): 2508–2511.
[4] LV M, ZHENG D, YE M, et al. Optimized porous rutile TiO2 nanorod arrays for enhancing the efficiency of dye-sensitized solar cells[J]. Energy Environ Sci, 2013, 6(5): 1615–1622.
[5] PAN Z, MORA-SERO I, SHEN Q, et al. High-efficiency “green” quantum dot solar cells[J]. J Am Chem Soc, 2014, 136(25): 9203–9210.
[6] REN Z, WANG J, PAN Z, et al. Amorphous TiO2 buffer layer boosts efficiency of quantum dot sensitized solar cells to over 9%[J]. Chem Mater, 2015, 27(24): 8398–8405.
[7] DU J, DU Z, HU J S, et al. Zn-Cu-In-Se quantum dot solar cells with a certified power conversion efficiency of 11.6%[J]. J Am Chem Society, 2016, 138(12): 4201–4209.
[8] BASIT M A, ABBAS M A, JUNG E S, et al. Improved light absorbance and quantum-dot loading by macroporous TiO2 photoanode for PbS quantum-dot-sensitized solar cells[J]. Mater Chem Phys, 2017, 196: 170–176.
[9] LUO J, SUN J, GUO P C, et al. Enhancement in efficiency of CdS/CdSe quantum dots-sensitized solar cells based on ZnO nanostructures by introduction of MnS layer[J]. Mater Lett, 2018, 215: 176–178.
[10] REN Z, WANG J, PAN Z, et al. Amorphous TiO2 buffer layer boosts efficiency of quantum dot sensitized solar cells to over 9%[J]. Chem Mater, 2015, 27(24): 8398–8405.
[11] 刘炳坤. 量子点敏化TiO2纳米结构太阳能电池中光阳极的构筑及其光电性质的研究[D]. 吉林大学, 2015.
LIU Bingkun. Photoanode fabrication and photoelectric properties of quantum dots sensitized TiO2 nanostructured solar cells (in Chinese, dissertation). Jilin University, 2015.
[12] GAO F, CHEN Q, ZHANG X, et al. ZnO/TiO2 core-shell heterojunction for CdS and PbS quantum dot-cosensitized solar cells[J]. Current Appl Phys, 2018, 18(5): 546–550.
[13] FENG H L, WU W Q, RAO H S, et al. Three-dimensional TiO2/ZnO hybrid array as a heterostructured anode for efficient quantum-dot-sensitized solar cells[J]. ACS Appl Mater Interf, 2015, 7(9): 5199–5205.
[14] 杨纪元. 氧化锌纳米棒/纳米管阵列的制备及其在染料敏化太阳能电池中的应用[D]. 华侨大学, 2013.
YANG Jiyuan. Preparation of zinc oxide nanorod/nanotube array and its application in dye-sensitized solar cells (in Chinese, dissertation). Huaqiao University, 2013
[15] YUE G, WU J, XIAO Y, et al. CdTe quantum dots-sensitized solar cells featuring PCBM/P3HT as hole transport material and assistant sensitizer provide 3.40% efficiency[J]. Electrochim Acta, 2012, 85: 182–186.
[16] JARA D H, YOON S J, STAMPLECOSKIE K G, et al. Size-dependent photovoltaic performance of CuInS2 quantum dot-sensitized solar cells[J]. Chem Mater, 2014, 26(24): 7221–7228.
[17] MA J, SU S, FU W, et al. Synthesis of ZnO nanosheet array film with dominant {0001} facets and enhanced photoelectrochemical performance co-sensitized by CdS/CdSe[J]. Cryst Eng Comm, 2014, 16(14): 2910–2916.
[18] MA D, SHI J W, ZOU Y, et al. Highly efficient photocatalyst based on a CdS quantum dots/ZnO nanosheets 0D/2D heterojunction for hydrogen evolution from water splitting[J]. ACS Appl Mater Interf, 2017, 9(30): 25377–25386.
[19] WANG W, HAO Q, WANG W, et al. Quantum dot-functionalized porous ZnO nanosheets as a visible light induced photoelectrochemical platform for DNA detection[J]. Nanoscale, 2014, 6(5): 2710–2717.
[20] CHEN H, LI W, LIU H, et al. CdS quantum dots sensitized single-and multi-layer porous ZnO nanosheets for quantum dots-sensitized solar cells[J]. Electrochem Commun, 2011, 13(4): 331–334.
[21] 袁博, 夏惠, 王晓雄, 等. ZnO纳米薄膜的电化学制备及其AFM形貌表征[J]. 大学物理实验, 2010, 23(3): 1–3.
YUAN Bo, XIA Hui, WANG Xiaoxiong, et al. Phys Exp College (in Chinese), 2010, 23(3): 1–3.
[22] SHE G W, ZHANG X H, SHI W S, et al. Controlled synthesis of oriented single-crystal ZnO nanotube arrays on transparent conductive substrates[J]. Appl Phys Lett, 2008, 92(5): 053111.
[23] ELIAS J, TENA-ZAERA R, WANG G Y, et al. Conversion of ZnO nanowires into nanotubes with tailored dimensions[J]. Chem Mater, 2008, 20(21): 6633–6637.
[24] KEHAGIAS T, KOMNINOU P, NOUET G, et al. Misfit relaxation of the A l N/Al2O3 (0001) interface[J]. Phys Rev B, 2001, 64(19): 195329.
[25] MAJIMEL J, BACINELLO D, DURAND E, et al. Synthesis of hybrid gold–gold sulfide colloidal particles[J]. Langmuir, 2008, 24(8): 4289–4294.
|