首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
MgAl2O4掺杂对ZTA–MgAl2O4复相陶瓷力学及热学性能的影响
作者:郭亚威1 2 柴建龙1 2 朱亚滨1 魏孔芳1 李淑芬1 2 申铁龙1 姚存峰1 崔明焕1 王志光1 
单位:(1. 中国科学院近代物理研究所 兰州 730000 2. 中国科学院大学 北京 100049) 
关键词:镁铝尖晶石 氧化锆增韧氧化铝复相陶瓷 微观结构 力学性能 热学性能 
分类号:TQ174.75
出版年,卷(期):页码:2019,47(12):0-0
DOI:
摘要:

 以Al2O3、ZrO2、MgO为初始粉末,采用放电等离子体烧结(SPS)制备ZTA–MgAl2O4复相陶瓷,研究MgAl2O4掺杂对ZTA–MgAl2O4复相陶瓷微观结构,力学及热学性能的影响。结果表明:ZTA–MgAl2O4复相陶瓷物相包括α-Al2O3、t-ZrO2和MgAl2O4,烧结过程中MgO与Al2O3完全反应生成MgAl2O4;随MgAl2O4添加量增加,复相陶瓷Vickers硬度由21 GPa逐渐降低至17.5 GPa;而断裂韧性及抗弯强度呈现先增大后减小的趋势,当MgAl2O4添加量为15%(体积分数)时,断裂韧性和弯曲强度达到最大值,分别为8.55 MPa•m1/2和1 056 MPa;此外,相同测试温度下复相陶瓷热导率随MgAl2O4添加量的增加逐渐减小,如温度为50 ℃时复相陶瓷热导率由18.5 W/(m•K)逐渐降低到14.3 W/(m•K)。

基金项目:
国家自然科学基金(11505247);中国科学院战略性先导专项项目(XDA21010202)资助。
作者简介:
参考文献:

 [1] LU H X, CAI Y, HE M, et al. Preparation and properties of lanthana doped ZTA ceramics with plate–like crystals by microwave sintering[J]. Mater Res Innov, 2012, 16(6): 406–412.

[2] 赵冉. 添加剂对Al2O3–ZrO2复相陶瓷烧结与力学性能的影响[D]. 郑州大学, 2011.
ZHAO Ran. Effect of additives on sintering and mechanical properties of Al2O3–ZrO2 multiphase ceramics (in Chinese, dissertation). Zhengzhou University, 2011. 
[3] LOUAT N P, RATH B B. Plastic flow and the Griffith fracture criterion[J]. Acta Met, 1987, 35(12): 2921–2927. 
[4] 于庆华, 尹茜, 王介强, 等. 纳米粉体制备ZTA复相陶瓷的性能研究[J]. 陶瓷学报, 2016, 37(1): 39–43.
YU Qinghua, YIN Qian, WANG Jieqiang, et al. J Ceram (in Chinese), 2016, 37(1): 39–43.
[5] 晏建武, 鲁世强, 周继承, 等. 纳米SiC和添加剂ZrO2对Al2O3基纳米复合陶瓷显微组织和性能的影响[J]. 中国有色金属学报, 2004, 14(6): 1007–1012.
YAN Jianwu, LU Shiqiang, ZHOU Jiqian, et al. Chin J Nonferrous Met (in Chinese), 2004, 14(6): 1007–1012. 
[6] CHMIELEWSKI M, PIETRZAK K. Processing, microstructure and mechanical properties of Al2O3–Cr nanocomposites[J]. J Eur Ceram Society, 2007, 27(2): 1273–1279.
[7] TRUSTY P A, YEOMANS J A. The toughening of alumina with iron: Effects of iron distribution on fracture toughness[J]. J Eur Ceram Soc, 1997, 17(4): 495–504.
[8] TAOTAO A. Microstructure and mechanical properties of in–situ synthesized Al2O3/TiAl composites[J]. Chin J Aeronaut, 2008, 21(6): 559–564.
[9] 李旺兴, 李东红, 沈湘黔. 提高氧化铝陶瓷断裂韧性的先进途径[J]. 矿冶工程, 2005, 25(4): 73–76.
LI Wangxing, LI Donghong, SHEN, Hunan. Mining Met Eng (in Chinese), 2005, 25(4): 73–76
[10] 范锦鹏, 赵大庆. 多壁碳纳米管–氧化铝复合材料的制备及增韧机理研究[J]. 纳米技术与精密工程, 2004, 2(3): 182–186.
FAN Jinpeng, ZHAO Daqing. Nanotechnol Precis Eng (in Chinese), 2004, 2(3): 182–186. 
[11] NAIR R R, BLAKE P, GRIGORENKO A N, et al. Fine Structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881): 1308–1308. 
[12] EVANS A G, CANNON R M. Toughening of brittle solids by martensitic transformations[J]. Acta Met, 1986, 34(5): 761–800.
[13] 张国军, 金宗哲. 颗粒增韧陶瓷的增韧机理[J]. 硅酸盐学报, 1994(3): 259–269.
ZHANG Guojun, JIN Zongzhe. J Chin Ceram Soc (in Chinese), 1994(3): 259–269. 
[14] GANESH I, SRINIVAS B, JOHNSON R, et al. Effect of preparation method on sinterability and properties of nanocrystalline MgAl2O4 and ZrO2–MgAl2O4 materials[J]. British Ceram Transact, 2003, 102(3): 119–128. 
[15] ZINKLE S J, PELLS G P. Microstructure of Al2O3 and MgAl2O4 irradiated at low temperatures[J]. J Nucl Mater, 1998, 253(1): 120–132. 
[16] LIU J H, LV X J, LI J, et al. Effect of MgO on phase compositions and properties of Al2O3–MgAl2O4 composite—A prospective man–made ledge material[J]. Transact-Indian Ceram Soc, 2016, 75(2): 1–4. 
[17] ZHAI S Y, LIU J C, NIE L F, et al. Microstructure and mechanical properties of Al2O3/MgAl2O4/ZrO2 eutectic ceramic prepared with induction zone melting[J]. Mater Res Innovat, 2015, 19(sup1): S1–355–S1–358. 
[18] 陈国清, 谢杰, 王旭东, 等. Al2O3–ZrO2–MgAl2O4三元纳米复相陶瓷的微观组织和力学性能[J]. 航空材料学报, 2008, 28(5): 76–80.
CHEN Guoqing, XIE Jie, WANG Xudong, et al. J Aeronaut Mater (in Chinese), 2008, 28(5): 76–80. 
[19] 张巨先, 高陇桥. 晶内型结构的Al2O3/SiCp纳米复相陶瓷[J]. 硅酸盐学报, 2001, 29(5).
ZHANG Juxian, GAO Longqiao. J Chin Ceram Soc (in Chinese), 2001, 29(5). 
[20] 周洋, 徐明英. 氧化铝基陶瓷复合材料的微观结构与增韧机理[J]. 无机材料学报, 1997, 12(2): 161–168
ZHOU Yang, XU Mingying.  J Inorg Mater (in Chinese), 1997, 12(2): 161–168.
[21] 高翔, 丘泰, 焦宝祥, 等. 纳米ZrO2对Al2O3陶瓷性能的影响[J]. 硅酸盐通报, 2005, 24(1).
GAO Xiang, QIU Tai, JIAO Baoxiang, et al. J Chin Ceram Soc (in Chinese), 2005, 24(1). 
[22] 林衡. MgO+Y–TZP/Al2O3复合材料性能的研究[D]. 华南理工大学, 2010.
LIN Heng. Study on properties of MgO+Y–TZP/Al2O3 composites (in Chinese, dissertation). South China University of Technology, 2010.
[23] 王旭东. ZrO2添加量和烧结温度对氧化铝陶瓷性能的影响[J]. 铸造技术, 2018, 317(8): 179–183.
WANG Xudong. Foundry Technol (in Chinese), 2018, 317(8): 179–183.
[24] EVANS A G, CANNON R M. Toughening of brittle solids by martensitic transformations[J]. Acta Met, 1986, 34(5): 761–800. 
[25] 武丽华, 陈福, 赵恩录, 等. ZrO2陶瓷结构及增韧机理研究[J]. 山东陶瓷, 2008, 31(6): 34–37.
WU Lihua, CHEN Fu, ZHAO Enlu, et al. Shandong Ceram (in Chinese), 2008, 31(6): 34–37.
[26] 马中辉, 孙洪巍, 石策, 等. 热震对ZrO2陶瓷弯曲强度和显微结构的影响[J]. 材料导报, 2010, 24(s1): 487–489.
MA Zhonghui, SUN Hongwei, SHI Che, et al. Mater Rev (in Chinese), 2010, 24(s1): 487–489.
[27] SLACK G A. Nonmetallic crystals with high thermal conductivity[J]. J Phys Chem Solids, 1973, 34(2): 321–335. 
[28] CALLAWAY J. Model for lattice thermal conductivity at low temperatures[J]. Phys Rev, 1959, 113(4): 436–441. doi: 10.1007/ BF00871543.
[29] 匡加才, 张长瑞, 周新贵, 等. AlN陶瓷热导率影响因素的研究[J]. 材料导报, 2003, 17(4): 28–31.
KUANG Jiacai, ZHANG Changrui, ZHOU Xingui, et al. Mater Rev (in Chinese), 2003, 17(4): 28–31.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com