首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
ZrC掺杂对ZTA复相陶瓷微观结构和力学性能的影响
作者:李淑芬1 2 朱亚滨1 2 郭亚威1 2 柴建龙1 2  超1 申铁龙1 2 姚存峰1 崔明焕1 2 王志光1 
单位:(1. 中国科学院近代物理研究所 兰州 730000 2. 中国科学院大学  北京100049) 
关键词:碳化锆 氧化锆增韧氧化铝复相陶瓷 微观结构 力学性能 
分类号:TQ174.1
出版年,卷(期):页码:2019,47(12):0-0
DOI:
摘要:

 以ZTA20% (zirconia-20% toughened alumina)为基体,通过掺杂不同体积分数的ZrC (10%、15%、20%、25%)研究其对复相陶瓷微观结构和力学性能的影响。采用放电等离子体烧结法在1 400 ℃、40 MPa保温15 min制备样品。用Archimedes法测得样品相对密度最高可达99.08%。不同ZrC含量的烧结样品的物相成分均为ZrC、α-Al2O3和ZrO2,烧结后无杂质相产生,表明复相陶瓷在烧结过程中具有优良的化学相容性,该复相陶瓷内部各晶粒尺寸均匀,无异常长大现象,断裂机制为穿晶断裂和沿晶断裂相结合。随着ZrC含量的增加,复相陶瓷的弯曲强度先增大后减小,ZrC含量为20%时达到最大值722 MPa;断裂韧性则由5.47 MPa•m1/2增加到6.51 MPa•m1/2;显微硬度由17.30 GPa逐渐降低至16.19 GPa。

基金项目:
国家自然科学基金(91426301,11505247)。
作者简介:
参考文献:

 [1] PONNILAVAN V, POOJAR P, GEETHANATH S, et al. Gadolinium doping in zirconia-toughened alumina systems and their structural, mechanical, and aging behavior repercussions[J]. Inorg Chem, 2017, 56(18): 10998–11007. 

[2] RAOA P, IWASAB M, TANAKAB T, et al. Centrifugal casting of Al2 O3–15wt.% ZrO2 ceramic composites[J]. Ceram Int, 2003, 29(2): 209–212.
[3] 任会兰, 龙波, 宁建国, 等. ZrO2增韧Al2O3陶瓷的力学性能和增韧机制[J]. 复合材料学报, 2015, 32(3): 776–782.
REN Huilan, LONG Bo, NING Jianguo, et al. J J Inorg Mater (in Chinese), 2015, 32(3): 776–782.
[4] 徐利华, 连芳, 李文超, 等. 不同形态ZrO2复合Al2O3陶瓷的抗热震性设计与表征[J]. 硅酸盐学报, 2000, 28(5): 412–418. 
XV Lihua, LIAN Fang, LI Wenchao, et al. J Chin Ceram Soc (in Chinese), 2000, 28(5): 412–418.
[5] 景茂祥, 沈湘黔, 李东红, 等. ZrO2和Ni复合掺杂对Al2O3陶瓷结构及性能的影响[J]. 硅酸盐学报, 2007, 35(1): 35–40.
JING Maoxiang, SHEN Xiangqian, et al. J Chin Ceram Soc (in Chinese), 2007, 35(1): 35–40.
[6] 闫洪, 窦明民, 李和平. 二氧化锆陶瓷的相变增韧机理和应用[J]. 陶瓷学报, 2000, 21(1): 46–50.
YAN Hong, DOU Mingmin, LI Heping. J Ceram (in Chinese), 2000, 21(1): 46–50.
[7] SWAPAN K S, BYONG T L. Fabrication of novel multilayer Al2O3–(m–ZrO2)/t–ZrO2 fibrous ceramics composite[J]. Ceram Int, 2012, 38(2): 1043–1050.
[8] WADA M, SEKION T, KUSUNOSE T, et al. Effects Of Fine Alumina Dispersion On Ionic Conductivity And Mechanical Properties Of Ytterbia Stabilized Cubic Zirconia[J]. Mater Res Innovations, 2004, 8(2): 115–120.
[9] 蔡阳. 稀土掺杂ZTA复合陶瓷的制备与性能研究[D]. 郑州: 郑州大学, 2012.
CAI Yang. D Zhengzhou University (in Chinese), 2012.
[10] 于庆华. 纳米技术制备ZTA复合陶瓷材料的硏究[D]. 济南:济南大学. 2005.
YU Qinghua. D Jinan University (in Chinese), 2005.
[11] 王娟, 饶平根, 吕明, 等. ZTA陶瓷材料力学性能和摩擦磨损性能的研究[J]. 陶瓷学报, 2008, 29(2): 105–110.
WANG Juan, RAO Pinggen, LV Ming, et al. J Ceram (in Chinese),  2008, 29(2): 105–110.
[12] ZHU Tianbin, XIE Zhipeng, HAN Yao, et al. Microstructure and mechanical properties of ZTA composites fabricated by oscillatory pressure sintering[J]. Ceram Int, 2018, 44(1): 505–510.
[13] 梁晓峰, 杨世源, 尹光福. 氧化铝增韧氧化铝陶瓷复合粉体的研究进展[J]. 山东陶瓷, 2004, 27(1).
LIANG Xiaofeng, YANG Shiyuan, YIN Guangfu. J Shandong Ceram (in Chinese), 2004, 27(1).
[14] 武海棠, 魏玺, 于守泉, 等. 整体抗氧化C/C–ZrC–SiC复合材料的超高温烧蚀性能研究[J]. 无机材料学报, 2011, 26(8): 852–856.
WU Haitang, WEI Xi, YU Shouquan, et al. J Inorg Mater (in Chinese), 2011, 26(8): 852–856.
[15] TOMASZEWSKI H, BONIECKI M, WEGLARZ H. Toughness–curve behaviour of alumina–SiC and ZTA–SiC composites[J]. J Eur Ceram Soc, 2000, 20(8): 1215–1224.
[16] Wang H Z, Gao L, Guo J K. Fabrication and microstructure of Al2O3–ZrO2(3Y)–SiC nanocomposites[J]. J Inorg Mater. 1999, 14(2): 280–286.
[17] ZHANG Xiuoing, OYANG Jiahu, WANG Yujin, et al. Microstructure and High–Temperature Mechanical Properties of ZrO2 –Al2O3 –SiC Ceramics[J]. J Mater Eng Perform, 2015, 24(9): 3615–3621. 
[18] Grigoriev M, Kotelnikov N, Buyakova S, Kulkov S. Microstructure, mechanical properties and machining performance of hot–pressed Al2O3–ZrO2–TiC composites[J]. Mater Sci Eng, 2016, 116(1): 012002.
[19] HANISAH M, SURIYANA M A, AZHAR Z A, et al. Effects of TiO2 addition on the phase, mechanical properties, and microstructure of zirconia–toughened alumina ceramic composite[J]. Ceram Int, 2015, 41(3): 3961–3967.
[20] BULLOCK R E, Kaae J L. Performance of coated UO2 particles gettered with ZrC[J]. J Nucl Mater, 1983, 115(1): 69–83.
[21] 陈明伟, 邱海鹏, 张伟刚. 碳化锆有机前驱体陶瓷化过程研究[C]. 2012.
CHEN Mingwei, QIU Haipeng, ZHANG Weigang. C 2012.
[22] 周后明, 曾国章. 稀土氧化物La2O3/Y2O3增韧补强ZTA陶瓷材料及其耐磨性能研究[J]. 材料导报B, 2016, 30(6): 14–17.
ZHOU Houming, ZENG Guozhang. J Mater Rew (in Chinese), 2016, 30(6): 14–17.
[23] GOURDIN S, MARCIN L, PODGORSKI M, et al. Effective elastic properties and residual stresses in directionally solidified eutectic Al2O3/YAG/ZrO2 ceramics estimated by finite element analysis[J]. J Mater Sci, 2017, 52(24): 13736–13747.
[24] Zhang Y, Guo W M, Jiang Z B, Zhu Q Q, Sun S K, You Y, et al. Dense high–entropy boride ceramics with ultra–high hardness[J]. Scripta Mater, 2019, 164: 135–139.
[25] SUI Yudong, HAN Lian, JIANG Yehua, et al. Influence of Er2O3 content on microstructure and mechanical properties of ZTA–TiO2 composites[J]. J Rare Earths, 2019, 37(3): 299–304.
[26] 郭明玉. 纳米氧化铝/氧化锆复相陶瓷材料的制备与性能的研究[D]. 武汉理工大学, 2014.
GUO Mingyu. D Wuhan University (in Chinese), 2014.
[27] 王磊. 2A12铝合金搅拌摩擦修复区显微硬度分析[J]. 热加工工艺, 2016, 45(7): 20–24.
WANG Lei. J Hot Working Thch (in Chinese), 2016, 45(7): 20–24.
[28] 潘金生, 仝健民, 田民波, 等. 材料科学基础(修订版)[M]. 2011.
PAN Jinsheng, TONG Jianmin, TIAN Minbo, et al. M (in Chinese), 2011.
[29] 蔡乾煌. 陶瓷增韧力学中的相变准则[J]. 应用力学报, 1991, 8(3): 29–38.
CAI Qianhuang. J Appl Mech (in Chinese), 1991, 8(3): 29–38.
[30] 宋桂明, 王玉金. ZrCP/W复合材料组织结构与室温力学性能[J]. 稀有金属材料与工程, 2001, 30(6): 448–452.
SONG Guiming, WANG Yvjin. J Rare Metal Mat Eng (in Chinese), 2001, 30(6): 448–452.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com