首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
镧掺杂二氧化锡中空微纳米球的制备及吸波性能
作者:    唐香珺 程兆刚   
单位:(陆军工程大学石家庄校区 石家庄 050003) 
关键词:镧掺杂 二氧化锡 电喷法 中空微纳米球 微波吸收性能 
分类号:TB34
出版年,卷(期):页码:2020,48(1):0-0
DOI:
摘要:

 以硝酸镧、氯化亚锡和聚乙烯吡咯烷酮(PVP)为原料,采用电喷法结合后续高温煅烧技术制备了La3+掺杂SnO2中空微纳米球。通过热重分析仪、Fourier变换红外光谱仪、X射线衍射仪、扫描电子显微镜和矢量网络分析仪等手段对目标产物进行了表征,研究了SnO2微纳米球中空结构的形成机制及La3+掺杂对其物相、微观形貌和吸波性能的影响。研究表明:La3+掺杂SnCl2/PVP前驱体聚合物呈完整球形,表面光滑,球径分布在0.5~2.2 μm之间。经600 ℃煅烧后,均生成了单一金红石型SnO2,且La3+的加入未改变SnO2的晶体结构;煅烧后产物均为中空球状,球面由许多小颗粒堆积而成,表面粗糙不平。当匹配厚度为2 mm时,La3+掺杂比例为0.6%(摩尔分数)的产物的吸波效果最佳:最低反射率为–29 dB,对应的吸收频率为11.1 GHz,低于–10 dB的吸收频带为10.0~13.0 GHz;该掺杂比例的产物随匹配厚度增加,最低反射率向低频移动,在8 GHz以下的最佳匹配厚度为4 mm,在此厚度下吸波性能优良:最低反射率为–27 dB,对应的吸收频率为4.9 GHz,低于–10 dB的吸收频带为4.5~5.8 GHz。

 La3+-doped SnO2 hollow micro/nanospheres were prepared by electrospray and calcination techniques with lanthanum nitrate, stannous chloride and polyvinylpyrrolidone (PVP) as raw materials. The formation mechanism of hollow structure was analyzed. The crystalline phase and micromorphology of the samples were examined by thermal gravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The microwave absorption properties of La3+-doped SnO2 were determined by a vector network analyzer. The results show that La3+-doped SnCl2/PVP precursor polymer appears smooth spheres with the diameters of 0.5–2.2 μm. The pure rutile structure of SnO2 forms at 600 ℃, and La3+ doping does not change the crystal structure. La3+-doped SnO2 micro/nanospheres appear to be a hollow structure, and the surfaces are made up of massive small particles. The optimum microwave absorption properties of La3+-doped SnO2 hollow micro/nanospheres with the matching thickness of 2 mm can be obtained when the doping ratio of La3+ is 0.6% (in mole). The minimum reflectivity can reach –29 dB at 11.1 GHz, and the frequency band with a reflectivity less than –10 dB is 10.0–13.0 GHz. When the doping ratio of La3+ is 0.6%, the minimum reflectivity of La3+-doped SnO2 hollow micro/nanospheres shifts to a low frequency as the matching thickness increases. The matching thickness is 4 mm at lower than  8 GHz, thus obtaining the optimum microwave absorption properties. The minimum reflectivity can reach –27 dB at 4.9 GHz, and the frequency band with a reflectivity less than –10 dB is 4.5–5.8 GHz.

基金项目:
河北省自然科学基金青年科学基金(E2015506011);陆军工程大学石家庄校区科研创新发展基金(KYSZJQZL1910)。
作者简介:
参考文献:

 [1] ZHAO B, ZHAO W Y, SHAO G, et al. Corrosive synthesis and enhanced electromagnetic absorption properties of hollow porous Ni/SnO2 hybrids[J]. Dalton Trans, 2015, 44: 15984–15993.

[2] 顾海权. 二氧化锡光学、气敏和磁学性质的研究[D]. 成都: 电子科技大学, 2012.
GU Haiquan. Study on optical, gas sensitive and magnetic properties of SnO2 (in Chinese, dissertation). Chengdu: University of Electronic Science and Technology of China, 2012.
[3] OH H S, NONG H N, STRASSER P. Preparation of mesoporous Sb-, F-, and In-doped SnO2 bulk powder with high surface area for use as catalyst supports in electrolytic cell[J]. Adv Funct Mater, 2015, 25: 1074–1081.
[4] 滕繁, 刘涌, 王伟, 等. 掺氟二氧化锡/二氧化钛复合薄膜的光催化和低辐射性能[J]. 硅酸盐学报, 2012, 38(5): 283–288.
TENG Fan, LIU Yong, WANG Wei, et al. J Chin Ceram Soc, 2012, 38(5): 283–288.
[5] WANG H K, DOU K P, TEOH W Y, et al. Engineering of facets, band structure, and gas-sensing properties of hierarchical Sn2+-doped SnO2 nanostructures[J]. Adv Funct Mater, 2013, 23: 4847–4853.
[6] MANJULA P, BOPPELLA R, MANORAMA S V. A facile and green approach for the controlled synthesis of porous SnO2 nanospheres: Application as an efficient photocatalyst and an excellent gas sensing material[J]. ACS Appl Mater Interfaces, 2012, 4: 6252–6260. 
[7] GUBBALA S, CHAKRAPANI V, KUMAR V, et al. Band-edge engineered hybrid structures for dye-sensitized solar cells based on SnO2 nanowires[J]. Adv Funct Mater, 2008, 18: 2411–2418.
[8] MISHRA M, SINGH A P, SINGH B P, et al. Performance of a nanoarchitectured tin oxide@reduced graphene oxide composite as a shield against electromagnetic polluting radiation[J]. ACS Adv, 2014, 4: 25904–25911.
[9] LUO H L, XIONG G Y, YANG Z W, et al. Facile preparation and extraordinary microwave absorption properties of carbon fibers coated with nanostructured crystalline SnO2[J]. Mater Res Bull, 2014, 53: 123–131.
[10] ZHAO B, FAN B B, XU Y W, et al. Preparation of honeycomb SnO2 foams and configuration-dependent microwave absorption features[J]. ACS Appl Mater Interfaces, 2015, 7(47): 26217–26225.
[11] IMRAN S, SHAHZAD N, MUHAMMAD N A, et al. Spin canting effect and microwave absorption properties of Sm-Mn substituted nanosized material[J]. J Magn Magn Mater, 2015, 395: 159–165. 
[12] ZHAO S, ZHENG J, JIANG F, et al. Co-precipitation synthesis and microwave absorption properties of CaMnO3 doped by La and Co[J]. J Mater Sci, 2015, 26(11): 1245–1253.
[13] 刘渊, 刘祥萱, 王煊军, 等. 铈离子掺杂镍基铁氧体的制备及其吸波性能[J]. 硅酸盐学报, 2013, 41(6): 756–760.
LIU Yuan, LIU Xiangxuan, WANG Xuanjun, et al. J Chin Ceram Soc, 2013, 41(6): 756–760.
[14] 刘嘉玮, 王建江, 许宝才, 等. 钙钛矿型La1–xBaxMnO3(0≤x≤0.5)的红外发射率和微波吸收性能[J]. 航空材料学报, 2017, 37(5): 29–34.
LIU Jiawei, WANG Jianjiang, XU Baocai, et al. J Aeronaut Mater (in Chinese), 2017, 37(5): 29–34.
[15] 李俊寿, 石随林, 赵芳, 等. SnO2/Zn2SnO4纳米结构的制备及光谱性质[J]. 稀有金属材料与工程, 2013, 42(S1): 6–9.
LI Junshou, SHI Suilin, ZHAO Fang, et al. Rare Met Mater Eng (in Chinese), 2013, 42(S1): 6–9.
[16] 闫军, 崔海萍, 游毓聪, 等. 无机阴离子掺杂对TiO2薄膜光催化性能的影响[J]. 稀有金属材料与工程, 2007, 36(S1): 873–875.
YAN Jun, CUI Haiping, YOU Yucong, et al. Rare Met Mater Eng (in Chinese), 2007, 36(S1): 873–875.
[17] WAGNER R S. Vapor-liquid-solid mechanism of single crystal growth[J]. Appl Phys Lett, 1964, 4: 89–90.
[18] WU Y Y, YANG P D. Direct observation of vapor-liquid-solid nanowire growth[J]. J Am Chem Soc, 2001, 123: 3165–3166.
[19] YANG P, LIEBER C M. Nanorod-superconductor composites: A pathway to materials with high critical current densities[J]. Science, 1996, 273: 1836–1840.
[20] RONG Q, DU Y C, WANG Y, et al. Rational design of yolk-shell C@C microspheres for the effective enhancement in microwave absorption[J]. Carbon, 2016, 98: 599–606.
[21] WEN F S, XIANG J Y, HAO C X, et al. Manipulating magnetic anisotropy of the ultrathin Co2FeAl full-heusler alloy film via growth orientation of the Pt buffer layer[J]. J Magn Magn Mater, 2013, 343: 281–285.
[22] 许宝才. 磁性空心微珠的自反应淬熄法制备及吸波性能研究[D]. 石家庄: 军械工程学院, 2013.
XU Baocai. Preparation and wave absorption properties of magnetic hollow microspheres by self-reaction quenching (in Chinese, dissertation). Shijiazhuang: Mechanical Engineering College, 2013.
[23] WEN F S, ZHANG F, LIU Z Y. Investigation on microwave absorption properties for multiwalled carbon nanotubces/Fe/Co/Ni nanopowders as lightweight absorbers[J]. J Phys Chem C, 2011, 115(29): 14025–14030.
[24] 蔡旭东, 王建江, 许宝才, 等. LiZn铁氧体空心微珠的自反应淬熄法制备及其低频吸波性能研究[J]. 稀有金属材料与工程, 2015, 44(8): 2038–2043.
CAI Xudong, WANG Jianjiang, XU Baocai, et al. Rare Met Mater Eng (in Chinese), 2015, 44(8): 2038–2043.
 
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com