[1] LIN J C. Human exposure to RF, microwave, and millimeter-wave electromagnetic radiation [Health Effects][J]. IEEE Microw Mag, 2016, 17(6): 32–36.
[2] INSKIP P D, TARONE R E, HATCH E E, et al. Cellular-telephone use and brain tumors[J]. N Engl J Med, 2001, 344(2): 79–86.
[3] WIART J, HADJEM A, WONG M F, et al. Analysis of RF exposure in the head tissues of children and adults[J]. Phys Med Biol, 2008, 53(13): 3681.
[4] QUAN L, QIN F X, ESTEVEZ D, et al. Magnetic graphene for microwave absorbing application: Towards the lightest graphene-based absorber[J]. Carbon, 2017, 125: 630–639.
[5] LI X, YIN X, SONG C, et al. Self-assembly core–shell graphene bridged hollow mxenes spheres 3D foam with ultrahigh specific EM absorption performance[J]. Adv Funct Mater, 2018, 28(41): 1803938.
[6] 武志红, 李妤婕, 张聪, 等. 竹炭/SiC复合材料结构及其吸波性能[J]. 硅酸盐学报, 2018, 46(1): 150–155.
WU Zhihong, LI Yujie, ZHANG Cong, et al. J Chin Ceram Soc, 2018, 46(1): 150–155.
[7] 张雪珂, 向军, 吴志鹏, 等. Co含量对轻质微波吸收剂C/Co纳米纤维吸波性能的影响[J]. 无机材料学报, 2017, 32(12):1299–1307.
ZHANG Xueke, XIANG Jun, WU Zhipeng, et al. J Inorg Mater (in Chinese), 2017, 32(12):1299–1307.
[8] LONG C, XU B, HAN C, et al. Flaky core–shell particles of iron@ iron oxides for broadband microwave absorbers in S and C bands[J]. J Alloy Compd, 2017, 709: 735–741.
[9] 葛超群, 汪刘应, 刘顾. 碳纳米管/平面各向异性羰基铁复合材料的液相共混法制备及其电磁性能[J]. 复合材料学报, 2018, 35(7): 1912–1920.
GE Chaoqun, WANG Liuying, LIU Gu. Acta Mater Compos Sin (in Chinese), 2018, 35(7): 1912–1920.
[10] WU H, WU G, WANG L. Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: Facile synthesis and electromagnetic properties[J]. Powder Technol, 2015, 269: 443–451.
[11] 褚海荣, 陈平, 于祺, 等. FeCo/石墨烯的制备和吸波性能[J]. 材料研究学报, 2018, 32(3): 161–167.
CHU Hairong, CHEN Ping, YU Qi, et al. Chin J Mater Res (in Chinese), 2018, 32(3): 161–167.
[12] WU F, SUN M, JIANG W, et al. A self-assembly method for the fabrication of a three- dimensional (3D) polypyrrole (PPy)/poly (3, 4-ethylenedioxythiophene) (PEDOT) hybrid composite with excellent absorption performance against electromagnetic pollution[J]. J Mater Chem C, 2016, 4(1): 82–88.
[13] YE F, SONG Q, ZHANG Z, et al. Direct growth of edge-rich graphene with tunable dielectric properties in porous Si3N4 ceramic for broadband high-performance microwave absorption[J]. Adv Funct Mater, 2018, 28(17): 1707205.
[14] FANG Y, WENYAN D, RAN M, et al. Silicon oxycarbide powders doped with in situ grown sic nanowires: Synthesis and dielectric properties[J]. Rare Metal Mat Eng, 2019, 48(1): 39–43.
[15] 穆阳, 邓佳欣, 李皓, 等. 两种连续SiC纤维的高温介电及吸波性能对比[J]. 无机材料学报, 2018, 33(4): 427–433.
MU Yang, DENG Jiaxin, LI Hao, et al. J Inorg Mater (in Chinese), 2018, 33(4): 427–433.
[16] LI W, GUO H. A novel and green fabrication of 3C-SiC nanowires from coked rice husk-silicon mixture and their photoluminescence property[J]. Mater Lett, 2018, 215: 75–78.
[17] WU R, ZHOU K, YUE C Y, et al. Recent progress in synthesis, properties and potential applications of SiC nanomaterials[J]. Prog Mater Sci, 2015, 72: 1–60.
[18] KRAUS H, SOLTAMOV V A, RIEDEL D, et al. Room-temperature quantum microwave emitters based on spin defects in silicon carbide[J]. Nat Phys, 2014, 10(2): 157.
[19] HU W, WANG L, WU Q, et al. Preparation, characterization and microwave absorption properties of bamboo-like β-SiC nanowhiskers by molten-salt synthesis[J]. J Mater Sci-Mater Electron, 2014, 25(12): 5302–5308.
[20] CHIU S C, YU H C, LI Y Y. High electromagnetic wave absorption performance of silicon carbide nanowires in the gigahertz range[J]. J Phys Chem C, 2010, 114(4): 1947–1952.
[21] SUN Z G, WANG S J, QIAO X J, et al. Synthesis and microwave absorbing properties of SiC nanowires[J]. Appl Phys A, 2018, 124(12): 802.
[22] LAN X, LIANG C, WU M, et al. Facile synthesis of highly defected silicon carbide sheets for efficient absorption of electromagnetic waves[J]. J Phys Chem C, 2018, 122(32): 18537–18544.
[23] ZHANG H, XU Y, ZHOU J, et al. Stacking fault and unoccupied densities of state dependence of electromagnetic wave absorption in SiC nanowires[J]. J Mater Chem C, 2015, 3(17): 4416–4423.
[24] LUO X, MA W, ZHOU Y, et al. Synthesis and photoluminescence property of silicon carbide nanowires via carbothermic reduction of silica[J]. Nanoscale Res Lett, 2010, 5(1): 252.
[25] SEO W S, KOUMOTO K, ARIA S. Morphology and stacking faults of β-silicon carbide whisker synthesized by carbothermal reduction[J]. J Am Ceram Soc, 2000, 83(10): 2584–2592.
[26] TATEYAMA H, SUTOH N, MURAKAWA N. Quantitative analysis of stacking faults in the structure of SiC by X-ray powder profile refinement method[J]. J Ceram Soc Jpn, 1988, 96(1118): 1003–1011.
[27] ZHANG M, LI Z, WANG T, et al. Preparation and electromagnetic wave absorption performance of Fe3Si/SiC@ SiO2 nanocomposites[J]. Chem Eng J, 2019, 362: 619–627.
[28] POURASAD J, EHSANI N, KHALIFESOLTANI S A. Preparation and characterization of SiO2 thin film and SiC nanofibers to improve of graphite oxidation resistance[J]. J Eur Ceram Soc, 2016, 36(16): 3947–3956.
[29] MAROUFI S, MAYYAS M, SAHAJWALLA V. Novel synthesis of silicon carbide nanowires from e-waste[J]. ACS Sustain Chem Eng, 2017, 5(5): 4171–4178.
[30] CHEN S, LI W, LI X, et al. One-dimensional SiC nanostructures: Designed growth, properties, and applications[J]. Prog Mater Sci, 2019, 104: 138–214.
[31] SUMFLETH J, PREHN K, WICHMANN M H G, et al. A comparative study of the electrical and mechanical properties of epoxy nanocomposites reinforced by CVD and arc-grown multi-wall carbon nanotubes[J]. Compos Sci Technol, 2010, 70(1): 173–180.
[32] COLE K S, COLE R H. Dispersion and absorption in dielectrics I. Alternating current characteristics[J]. J Chem Phys, 1941, 9(4): 341–351.
[33] INUI T, KONISHI K, ODA K. Fabrications of broad-band RF-absorber composed of planar hexagonal ferrites[J]. IEEE Trans Magn, 1999, 35(5): 3148–3150.
[34] WANG Y, XIAO P, ZHOU W, et al. Microstructures, dielectric response and microwave absorption properties of polycarbosilane derived SiC powders[J]. Ceram Int, 2018, 44(4): 3606–3613.
[35] ZHOU W, LONG L, XIAO P, et al. Silicon carbide nano-fibers in-situ grown on carbon fibers for enhanced microwave absorption properties[J]. Ceram Int, 2017, 43(7): 5628–5634.
[36] KUANG J, JIANG P, RAN F, et al. Conductivity-dependent dielectric properties and microwave absorption of Al-doped SiC whiskers[J]. J Alloy Compd, 2016, 687: 227–231.
[37] LIU X, ZHANG L, YIN X, et al. The microstructure and electromagnetic wave absorption properties of near-stoichiometric SiC fibre[J]. Ceram Int, 2017, 43(3): 3267–3273.
[38] MENG S, GUO X, JIN G, et al. Preparation and microwave absorbing properties of SiC microtubes[J]. J Mater Sci, 2012, 47(6): 2899–2902.
|