[1]JUNG E H, JEON N J, PARK E Y, et al. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene)[J]. Nature, 2019, 567: 511–515.
[2]SHEN C, LI K, HOU Q, et al. White LED based on YAG:Ce,Gd phosphor and CdSe–ZnS core/shell quantum dots[J]. IEEE Photonic Technol, 2010, 22(12): 884–886.
[3]SHEN H, GAO Q, ZHANG Y, et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency[J]. Nat Photonics, 2019, 13(3): 192–197.
[4]QIAN H, DONG C, PENG J, et al. High-quality and water-soluble near-infrared photoluminescent CdHgTe/CdS quantum dots prepared by adjusting size and composition[J]. J Phys Chem C, 2007, 111(45): 16852–16857.
[5]PARK S H, HONG A, KIM J H, et al. Highly bright yellow-green-emitting CuInS2 colloidal quantum dots with core/shell/shell architecture for white light-emitting diodes[J]. ACS Appl Mater Interfaces, 2015, 7(12): 6764–6771.
[6]HU X, CHEN T, XU Y, et al. Hydrothermal synthesis of bright and stable AgInS2 quantum dots with tunable visible emission[J]. J Lumin, 2018, 200: 189–195.
[7]CHANG S H, CHIU B C, GAO T L, et al. Selective synthesis of copper gallium sulfide (CuGaS2) nanostructures of different sizes, crystal phases, and morphologies[J]. Cryst Eng Common, 2014, 16(16): 3323–3330.
[8]KIM J H, KIM B Y, JANG E P, et al. A near-ideal color rendering white solid-state lighting device copackaged with two color-separated Cu–X–S (X=Ga, In) quantum dot emitters[J]. J Mater Chem C, 2017, 5(27): 6755–6761.
[9]CASTRO S L, BAILEY S G, RAFFAELLE R P, et al. Synthesis and characterization of colloidal CuInS2 nanoparticles from a molecular single-source precursor[J]. J Phys Chem B, 2004, 108(33): 12429–12435.
[10]ZHANG J, XIE R, YANG W. A simple route for highly luminescent quaternary Cu-Zn-In-S nanocrystal emitters[J]. Chem Mater, 2011, 23(14): 3357–3361.
[11]KIM J H, YANG H. High-efficiency Cu-In-S quantum-dot-light- emitting device exceeding 7%[J]. Chem Mater, 2016, 28(17): 6329–6335.
[12]GUO W, CHEN N, TU Y, et al. Synthesis of Zn–Cu–In–S/ZnS core/shell quantum dots with inhibited blue-shift photoluminescence and applications for tumor targeted bioimaging[J]. Theranostics, 2013, 3(2): 99–108.
[13]CHEN X, CHEN S, XIA T, et al. Aqueous synthesis of high quality multicolor Cu-Zn-In-S quantum dots[J]. J Lumin, 2017, 188: 162–167.
[14]LIU Y, CHEN X, MA Q. An efficient microwave-assisted hydrothermal synthesis of high-quality CuInZnS/ZnS quantum dots[J]. New J Chem, 2018, 42(6): 4102–4108.
[15]WU R, WANG T, WU M, et al. Synthesis of highly stable CuInZnS/ZnS//ZnS quantum dots with thick shell and its application to quantitative immunoassay[J]. Chem Eng J, 2018, 348: 447–454.
[16]CHEN F, YAO Y, LIN H, et al. Synthesis of CuInZnS quantum dots for cell labelling applications[J]. Ceram Int, 2018, 44(S1): S34–S37.
[17]徐彦乔, 陈婷, 江莞, 等. 配体对水相一锅法制备Cu-In-Zn-S量子点的影响[J]. 陶瓷学报, 2017, 38(6): 842–848.
XU Yanqiao, CHEN Ting, JIANG Wan, et al. J Ceram (in Chinese), 2017, 38(6): 842–848.
[18]高友良. 银纳米粒子的绿色合成及其SERS性能和应用研究[J]. 陶瓷学报, 2014, 35(3): 277–280.
GAO Youliang. J Ceram (in Chinese), 2014, 35(3): 277–280.
[19]WANG X, DAMASCO J, SHAO W, et al. Synthesis of Zn–In–S quantum dots with tunable composition and optical properties[J]. Chem Phys Chem, 2016, 17(5): 687–691.
[20]YU Y L, XU L R, CHEN J, et al. Hydrothermal synthesis of GSH–TGA co-capped CdTe quantum dots and their application in labeling colorectal cancer cells[J]. Colloid Surf B, 2012, 95: 247–253.
[21]ZHANG J, SUN W, YIN L, et al. One-pot synthesis of hydrophilic CuInS2 and CuInS2-ZnS colloidal quantum dots[J]. J Mater Chem C, 2014, 2(24): 4812–4817.
[22]XIANG W, MA X, LUO L, et al. Facile synthesis and characterization of core/shell Cu–In–Zn–S/ZnS nanocrystals with high luminescence[J]. Mater Chem Phys, 2015, 149-150: 437–444.
[23]ZHANG B, WANG Y, YANG C, et al. The composition effect on the optical properties of aqueous synthesized Cu–In–S and Zn–Cu–In–S quantum dot nanocrystals[J]. Phys Chem Chem Phys, 2015, 17(38): 25133–25141.
[24]LENG Z, HUANG L, SHAO F, et al. Facile synthesis of Cu–In–Zn–S alloyed nanocrystals with temperature-dependent photoluminescence spectra[J]. Mater Lett, 2014, 119: 100–103.
[25]LI L, QIAN H, FANG N, et al. Significant enhancement of the quantum yield of CdTe nanocrystals synthesized in aqueous phase by controlling the pH and concentrations of precursor solutions[J]. J Lumin, 2006, 116: 59–66.
[26]何春燕, 姜浩锡, 张敏华, 等. 超临界抗溶剂法制备纳米氧化铝颗粒[J]. 催化学报, 2007, 28(10): 890–894.
HE Chunyan, JIANG Haoxi, ZHANG Minhua, et al. Chin J Catal(in Chinese), 2007, 28(10): 890–894.
[27]ZHANG J, LI J, ZHANG J, et al. Aqueous synthesis of ZnSe nanocrystals by using glutathione as ligand: the pH-mediated coordination of Zn2+ with glutathione[J]. J Phys Chem C, 2010, 114(25): 11087–11091.
[28]CHEN Y, HUANG L, LI S, et al. Aqueous synthesis of glutathione-capped Cu+ and Ag+-doped ZnxCd1?xS quantum dots with full color emission[J]. J Mater Chem C, 2013, 1(4): 751–756.
[29]CHEN J, LI D, CHENG T, et al. Aqueous synthesis of high-fluorescence CdZnTe alloyed quantum dots[J]. J Alloy Compd, 2014, 589: 539–544.
[30]HUANG P C, JIANG Q, YU P, et al. Alkaline post-treatment of Cd(II)-glutathione coordination polymers: Toward green synthesis of water-soluble and cytocompatible CdS quantum dots with tunable optical properties[J]. ACS Appl Mater Interfaces, 2013, 5(11): 5239–5246.
[31]WEI R J, HU J C, ZHOU T F, et al. Ultrathin SnS2 nanosheets with exposed {001} facets and enhanced photocatalytic properties[J]. Acta Mater, 2014, 66: 163–171.
[32]WANG Q S, FANG T T, LIU P, et al. Direct synthesis of high-quality water-soluble CdTe:Zn2+ quantum dots[J]. Inorg Chem, 2012, 51(17): 9208–9213.
[33]邓大伟, 于俊生. 柠檬酸钠稳定的水溶性CdSe和CdSe/CdS量子点的荧光特性[J]. 无机化学学报, 2008, 24(5): 701–707.
DENG Dawei, YU Junsheng. Chin J Inorg Chem (in Chinese), 2008, 24(5): 701–707.
|