[1]XU Z H, XIA Z G, LIU Q L. Two-step synthesis and surface modification of CaZnOS: Mn2+ phosphors and the fabrication of a luminescent poly (dimethylsiloxane) film[J]. Inorg Chem, 2018, 57: 1670−1675.
[2]LI K, VAN DEUN R. Photoluminescence and energy transfer properties of a novel molybdate KBaY(MoO4)3:Ln3+ (Ln3+ = Tb3+, Eu3+, Sm3+, Tb3+/Eu3+, Tb3+/Sm3+) as a multi-color emitting phosphor for UV w-LEDs[J]. Dalton Trans, 2018, 47: 6995−7004.
[3]WU D, YE X Y, LIU S B, et al. Structure and luminescence properties of Li+-doped (Sc Lu)VO4:Eu3+ red phosphors[J]. J Chin Ceram Soc, 2018, 46: 128−135.
[4]SUN J, XU S C, SONG W R, et al. Luminescence property and mechanism of yellow-green long persistent phosphor Ba2B2O5:Ce3+, Dy3+[J]. J Chin Ceram Soc, 2017, 45: 1454−1458.
[5]ZHOU J, XIA Z G. Synthesis, luminescence properties and energy transfer behavior of Na2CaMg(PO4)2: Eu2+, Mn2+ phosphors[J]. J Lumines, 2014, 146: 22−26.
[6]ZHAO D, MA F X, MA S Q, et al. Four-dimensional incommensurate modulation and luminescent properties of host material Na3La(PO4)2[J]. Inorg Chem, 2017, 56: 1835−1845.
[7]ATUCHIN V V, SUBANAKOV A K, ALEKSANDROVSKY A S, et al. Structural and spectroscopic properties of new noncentrosymmetric self-activated borate Rb3EuB6O12 with B5O10 units[J]. Mater Des, 2018, 140: 488−494.
[8]ZHANG X, WU H, WANG Y, et al. Application of the dimensional reduction formalism to Pb12Li2(P2O7)2(P4O13)2(P4O13): A phosphate containing three types of isolated P−O Groups[J]. Inorg Chem, 2016, 55: 7329−7331.
[9]SHI Y, WANG Y, PAN S, et al. Synthesis, crystal structures and optical properties of two congruent-melting isotypic diphosphates: LiM3P2O7 (M=Na, K)[J]. J Solid State Chem, 2013, 197: 128−133.
[10]HE Z, ZHANG W, CHENG W, et al. Long-range and short-range orderings in K4Fe4P5O20 with a natrolite-like framework[J]. Dalton Trans, 2013, 42: 5860−5865.
[11]ZHANG W L, ZHANG H, XIE Z, et al. Syntheses, crystal and electronic structures of two new lead indium phosphates: Pb2In4P6O23 and Pb2InP3O11[J]. Solid State Sci, 2009, 11: 2008−2015.
[12]OGORODNYK I V, ZATOVSKY I V, SLOBODYANIK N S, et al. Synthesis, structure and magnetic properties of new phosphates K2Mn0.5Ti1.5(PO4)3 and K2Co0.5Ti1.5(PO4)3 with the langbeinite structure[J]. J Solid State Chem, 2006, 179: 3461−3466.
[13]ORLOVA A I, TRUBACH I G, KURAZHKOVSKAYA V S, et al. Synthesis, characterization, and structural study of K2FeZrP3O12 with the langbeinite structure[J]. J Solid State Chem, 2003, 173: 314−318.
[14]TRUBACH I G, BESKROVNYI A I, ORLOVA A I, et al. Synthesis and investigation of the new phosphates K2LnZr(PO4)3 (Ln = Ce-Yb, Y) with langbeinite structure[J]. Crystallogr Rep, 2004, 49: 614−618.
[15]CHORNII V, HIZHNYI YU, NEDILKO S G, et al. Synthesis, srystal structure, luminescence and electronic band structure of K2BiZr(PO4)3 phosphate compound[J]. Solid State Phenom, 2015, 230: 55−61.
[16]SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation: Ideas, illustrations, and the CASTEP code[J]. J Phys Condens Matter, 2002, 14: 2717−2744.
[17]PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77: 3865−3868.
[18]PAYNE M C, TETER M P, ALLAN D C, et al. Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients[J]. Rev Mod Phys, 1992, 64: 1045−1-53.
[19]PACK J D, MONKHORST H J. Special points for Brillonln-zone integrations—A reply[J]. Phys Rev B, 1977, 16: 1748−1749.
[20]BADRI A, JABLI M, WATTIAUX A, et al. Crystal structure, Mössbauer spectroscopy and dye adsorption properties of a new layered iron phosphate RbMgFe(PO4)2[J]. J Mole Struct, 2018, 1167: 161−168.
[21]WENDLANDT W M, HECHT H G. Reflectance spectroscopy[M]. Interscience: New York, 1966: 156−160.
[22]ZHAO D, MA F X, LIU B Z, et al. Syntheses, crystal structure and luminescent properties of polyborates PbLnB7O13 (Ln = Gd, Sm) with a 2D B7O13 (infinity) framework[J]. J Lumin, 2018, 195: 134−140.
[23]GUPTA P, BEDYAL A K, KUMAR V, et al. Energy transfer mechanism from Gd3+ to Sm3+ in K3Gd(PO4)2:Sm3+ phosphor[J]. Mater Res Exp, 2015, 2: 076202.
[24]RYBA-ROMANOWSKI W, LISIECKI R, BEREGI E, et al. Spontaneous and stimulated emission in Sm3+-doped YAl3(BO3)4 single crystal[J].J Lumin, 2015, 167: 163−166.
[25]LIU H Y, LI M F, WANG Z P, et al. Enhanced luminescence intensity of Ca9Al(PO4)7: Sm3+ by introducing Ce3+ as sensitizer[J]. J Chin Ceram Soc, 2018, 46: 1453–1457.
[26]ZHAO D, NIE C K. Synthesis and multi?color luminescent properties of Tb3+/Sm3+-codoped K3Gd3B4O12 phosphor[J]. J Liaocheng Univ, 2019, 32: 85−89.
[27]KACZKAN M, BORUC Z, TURCZYNSKI S, et al. Site-selective laser spectroscopy of Sm3+ ions in Y4Al2O9[J]. J Lumin, 2016, 170: 330−335.
[28]ZHOU R, WANG L, XU M, et al. Photoluminescence characteristics of Sm3+ doped Sr2P2O7 as new orange-red emitting phosphor[J]. J Alloys And Compd, 2015, 647: 136−140.
[29]HAN B, ZHANG L, LI P, et al. Photoluminescence properties of novel yellowish orange emitting phosphor KBaBP2O8: Sm3+[J]. Mater Lett, 2014, 126: 113−115.
[30]ZHAO D, NIE C K, TIAN Y, et al. A new luminescent host material K3GdB6O12: Synthesis, crystal structure and luminescent properties activated by Sm3+[J]. Z Kristallogr Cryst Mater, 2018, 233: 411−419.
[31]ZHAO D, NIE C K, Synthesis and multi-color luminescent properties of Tb3+/Sm3+-codoped K3Gd3B4O12 phosphor[J]. J Liaocheng Univ (Nat Sci), 2019, 32: 85−89.
[32]CHEN P, HU W, YANG D, et al. Ba2ZnWO6: Sm3+ as promising orange-red emitting phosphors: Photoluminescence properties and energy transfer process[J]. Phys B, 2018, 530: 127−132.
[33]LIU Q, WANG L, HUANG W, et al. Red-emitting double perovskite phosphors Sr1?xCaxLaMgSbO6: Eu3+: Luminescence improvement based on composition modulation[J]. Ceram Int, 2017, 43: 16292−16299.
[34]LAI Y, LI K, QIAO G, et al. Structure and magnetic properties of layered compounds RMn1.7Cr0.3Si2C (R = Nd, Sm, Dy)[J]. J Alloy Compd, 2018, 746: 238−243.
|