首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
纳米片层状类石墨氮化碳的制备及其光催化性能
作者:马爱琼1  电1 张由子2 高云琴1 
单位:(1. 西安建筑科技大学材料科学与工程学院 西安 710055  2. 西北工业大学材料科学与工程学院 西安 710068) 
关键词:类石墨氮化碳 二维纳米层 可见光 刻蚀 光催化剂 
分类号:O643
出版年,卷(期):页码:2020,48(1):0-0
DOI:
摘要:

 以三聚氰胺为原料,采用热缩聚合成法,结合酸、热刻蚀协同改性工艺,制备了二维纳米片层状类石墨氮化碳(g-C3N4)。通过X射线衍射、扫描电镜、透射电镜、红外光谱、X射线光电子能谱、Raman光谱对试样进行了物相组成、显微形貌与分子结构表征。采用BET法分析了试样的比表面积,采用紫外–可见漫反射光谱、Mott–Schottky曲线分析了试样的可见光吸收性能与能带结构。通过可见光降解罗丹明B染料与盐酸四环素溶液,评估了试样的可见光催化性能。结果表明:采用热刻蚀改性剥离时,当三聚氰胺与NH4Cl的摩尔比为5:4时,所制备的纳米片层状g-C3N4厚度为47 nm,比表面积为22 m2/g,可见光催化降解性能提高显著,相比未经过改性处理的g-C3N4,其降解效率提高了3.4倍;4 h内对盐酸四环素溶液的降解率达到83.2%。

基金项目:
陕西省自然科学基金(2020318029)。
作者简介:
参考文献:

 [1]ZHANG H, LI X, FENG Z, et al. Effect of heating temperature on preparation of graphite-like g-C3N4 by pyrolysis of urea aqueous solution and its mechanism. J Chin Ceram Soc, 2017, 46(2): 281–287.

[2]GAO X, DAI H, ZHAO P, et al. Photocatalytic degradation on phenol of microwave-assisted synthesized graphitic carbon nitride. J Chin Ceram Soc, 2017, 45(10): 1503–1509.
[3]PAPAILIAS I, GIANNAKOPOULOU T, TODOROVA N, et al. Effect of processing temperature on structure and photocatalytic properties of g-C3N4 [J]. Appl Surf Sci, 2015, 358: 278–286.
[4]KISCH H. Semiconductor photocatalysis-mechanistic and synthetic aspects[J]. Angew Chem Int Ed, 2013, 52: 812–847.
[5]SU J, ZHU L, GENG P, et al. Self-assembly graphitic carbon nitride quantum dots anchored on TiO2 nanotube arrays: An efficient heterojunction for pollutants degradation under solar light[J]. J Hazard Mater, 2016, 316: 159–168.
[6]LIU G, PAN J, YIN L, et al. Heteroatom-modulated switching of photocatalytic hydrogen and oxygen evolution preferences of anatase TiO2 microspheres[J]. Adv Funct Mater, 2012, 22(15): 3233–3238.
[7]THOMPSON T L, YATES J T. Surface science studies of the photoactivation of TiO2 new photochemical processes[J]. Chem Rev, 2006, (106): 4428–4453.
[8]FUJISHMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37–38.
[9]SUN W T, YU Y, PAN H Y, et al. CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes[J]. J Am Chem Soc, 2008, 130: 1124–1125.
[10]MAMBA G, MISHRA A K. Graphitic carbon nitride (g-C3N4) nanocomposites: A new and exciting generation of visible light driven photocatalysts for environmental pollution remediation[J]. Appl Catal B: Environ., 2016, 198: 347–377.
[11]PARK H, KIM H, MOON G, et al. Photoinduced charge transfer processes in solar photocatalysis based on modified TiO2[J]. Energy Environ Sci, 2016, 9: 411–433.
[12]WANG X, BLECHERT S, ANTONIETTI M. Polymeric graphitic carbon nitride for heterogeneous photocatalysis[J]. Acs Catal, 2012, 2(8): 1596–1606.
[13]LIU G, NIU P, SUN C, et al. Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4[J]. J Am Chem Soc, 2010, 132(33): 11642–11648.
[14]WANGY, WANG X, ANTONIETTI M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry[J]. Angew Chem Int Ed, 2012, 51(1): 68–89.
[15]ZHANG J, ZHANG M, LIN L, et al. Sol processing of conjugated carbon nitride powders for thin-film fabrication[J]. Angew Chem, 2015, 54(21): 6297–6301.
[16]MIAO H, ZHANG G, HU X, et al. A novel strategy to prepare 2D g-C3N4 nanosheets and their photoelectrochemical properties[J]. J Alloys Compd, 2017, 690: 669–676.
[17]WU M, YAN J M, ZHANG X W, et al. Synthesis of g-C3N4 with heating acetic acid treated melamine and its photocatalytic activity for hydrogen evolution[J]. Appl Surf Sci, 2015, 354: 196–200.
[18]YAN S C, LI Z S, ZOU Z G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine[J]. Langmuir, 2009, 25 (17): 10397–10401.
[19]JIANG J, OU  L Y, ZHU L, et al. Dependence of electronic structure of g-C3N4 on the layer number of its nanosheets: A study by Raman spectroscopy coupled with first-principles calculations[J]. Carbon, 2014, 80: 213–221.
[20]ZHANG J, ZHANG M,  ZHANG G, et al. Synthesis of carbon nitride semiconductors in sulfur flux for water photoredox catalysis[J]. Acs Catal, 2012 , 2(6): 940–948.
[21]LU J, WANG Y, HUANG J, et al. One-step synthesis of g-C3N4 hierarchical porous structure nanosheets with dramatic ultraviolet light photocatalytic activity[J]. Mater Sci Eng B, 2016, 214: 19–25.
[22]ZHU B, ZHANG L, XU D, et al. Adsorption investigation of CO2 on g-C3N4 surface by DFT calculation[J]. J CO2 Util, 2017, 21: 327–335.
[23]SHI A, LI H, YIN S, et al. Effect of conjugation degree and delocalized π-system on the photocatalytic activity of single layer g-C3N4[J]. Appl Catal B: Environ, 2017, 218: 137–146.
[24]ZHU B, ZHANG J, JIANG C, et al. First principle investigation of halogen-doped monolayer g-C3N4 photocatalyst[J]. Appl Catal B: Environ, 2017, 207: 27–34.
[25]MA X, WEI Y, WEI Z, et al. Probing π-π stacking modulation of g-C3N4/graphene heterojunctions and corresponding role of graphene on photocatalytic activity[J]. J. Colloid Interface Sci, 2017, 508: 274–281.
[26]DENG Y, TANG L, ZENG G, et al. Insight into highly efficient simultaneous photocatalytic removal of Cr(VI) and 2,4-diclorophenol under visible light irradiation by phosphorus doped porous ultrathin g-C3N4 nanosheets from aqueous media: Performance and reaction mechanism[J]. Appl Catal B: Environ, 2017, 203: 343–354.
[27]VADIVEL S, MARUTHAMANI D, HABIB-YANGJEH A, et al. Facile synthesis of novel CaFe2O4/ g-C3N4 nanocomposites for degradation of methylene blue under visible-light irradiation[J]. J Colloid Interface Sci, 2016, 480: 126–136.
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号    邮政编码:100831
电话:010-57811253  57811254    
E-mail:jccs@ceramsoc.com